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Neural underpinnings of the evidence accumulator
Carlos D Brody1,2 and Timothy D Hanks3,4

Gradual accumulation of evidence favoring one or another

choice is considered a core component of many different types

of decisions, and has been the subject of many

neurophysiological studies in non-human primates. But its

neural circuit mechanisms remain mysterious. Investigating it in

rodents has recently become possible, facilitating perturbation

experiments to delineate the relevant causal circuit, as well as

the application of other tools more readily available in rodents.

In addition, advances in stimulus design and analysis have

aided studying the relevant neural encoding. In complement to

ongoing non-human primate studies, these newly available

model systems and tools place the field at an exciting time that

suggests that the dynamical circuit mechanisms underlying

accumulation of evidence could soon be revealed.

Addresses
1 Howard Hughes Medical Institute, USA
2 Princeton Neuroscience Institute and Department of Molecular Biology,
Princeton University, Princeton, NJ 08540, USA
3 Center for Neuroscience, University of California Davis, Davis, CA
95618, USA
4 Department of Neurology, University of California Davis, Sacramento,
CA 95817, USA

Corresponding author: Brody, Carlos D (brody@princeton.edu)

Current Opinion in Neurobiology 2016, 37:xx–yy

This review comes from a themed issue on Neurobiology of behavior

Edited by Alla Karpova and Roozbeh Kiani

http://dx.doi.org/10.1016/j.conb.2016.01.003

0959-4388/# 2016 Elsevier Ltd. All rights reserved.

Introduction
When we face a difficult decision, and are therefore
uncertain as to what the best choice is, we are slow to
make up our minds; but when faced with an easy decision,
we are fast. This experience from daily life is one of the
most common behavioral observations in decision-mak-
ing, and applies in a remarkably wide array of different
types of decisions, ranging from perceptual decisions [1],
to numerical comparison decisions [2], to social decisions
[3], to visual search decisions [4,5], to gambling decisions
[6], to memory retrieval decisions [7], to lexical retrieval
decisions [8], to social decisions [3], to value-based deci-
sions [9–15]. A conceptually simple model, introduced
many decades ago in the behavioral literature [7,16–19]
has been able to account very well for the observation

across all the above decision-making domains. As a result,
this model, known as the ‘evidence accumulation’ or
‘evidence integration’ model, has become widely adopted
as a succinct yet powerful behavioral-level description of
core decision-making processes.

The central idea of the model is that as a subject is
forming a decision, evidence for or against different
possible choices is gradually accumulating in the sub-
ject’s mind; the final value of this accumulated evidence
then drives the decision itself — for example, commit-
ting to a particular choice by asking whether the accu-
mulated evidence lies to one side or another of a
reference value which we will label as the ‘decision
boundary’ (see Figure 1a). In this model, when the
evidence is strong, the accumulator’s value quickly
diverges away from the decision boundary, and it rapidly
becomes easy to say on which side of the decision
boundary it is. Whereas when the evidence is weak,
the value of the evidence accumulator meanders away
from the decision boundary only very gradually, leading
to slower, more difficult decisions.

Here we will first briefly describe studies with non-human
primates into the neural basis of the evidence accumu-
lator. Our main focus will then be on more recent work
using rodents, proposed as a complementary model sys-
tem with which to unravel the mechanistic circuit dy-
namics underlying the phenomenon. We limit ourselves
to two-alternative decisions (for multi-alternative deci-
sions, see [20]), and will not address work in humans (see
[21]).

Seminal studies in non-human primates
Starting in 1996, Michael Shadlen, William Newsome and
colleagues (in addition to related parallel work from
Jeffrey Schall’s group [22]), began a series of highly
influential electrophysiological experiments that sug-
gested a connection between neural responses and evi-
dence accumulation. Using monkeys trained to perform a
visual perceptual decision-making task in which the
experimenters could titrate each trial’s difficulty (‘random
dot motion discrimination’ (RDM) task; [23,24]), Shadlen
and Newsome found that during the process of decision
formation, neurons in the lateral intraparietal (LIP) sub-
region of posterior parietal cortex (PPC) had firing rates
that appeared to ramp up in time. Critically, when aver-
aged across difficult trials, firing rates ramped slowly; but
when averaged across easy trials, firing rates ramped much
more sharply — precisely as expected of the evidence
accumulator ([25–27]; Figure 1b). This was the first time
anyone had observed a signal inside the brain that matched
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what had been predicted for many years by the wide-
spread accumulator model. Their seminal finding led to
the proposal that there may be a 1-to-1 relationship
between PPC firing rates and the value of the evidence
accumulator.

Work in several laboratories (e.g. [28]) has uncovered
similar firing rate patterns in multiple brain regions, most
prominently in the frontal eye fields (FEF) [4,29,30,31!!],
but also in other regions (dorsolateral prefrontal cortex

[29]; superior colliculus [32–34]; and striatum [35];
Figure 1c). To date, causal perturbation studies of these
areas with the primate RDM task have been limited, with
only three existing published studies, all using only
unilateral electrical microstimulation. Gold and Shadlen
used microstimulation in the FEF to conclude that ‘de-
veloping oculomotor commands may reflect the formation
of the monkey’s direction judgement,’ but made no
conclusions about the causal role of the FEF itself
[36,37]. In the striatum, Ding and Gold found mixed
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Figure 1
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Evidence accumulator models and associated circuits. (a) Schematic of evidence accumulation process, here illustrated for a case when the
subject must decide between orienting left or right. As the decision process unfolds, noisy evidence favoring one choice (RIGHT) adds to the
accumulator while evidence favoring the other choice (LEFT) subtracts from the accumulator. The sign of the accumulated evidence when the
subject is asked to report their decision dictates the resulting decision choice. Trials with strong evidence that more consistently favors one
choice over the other result in steeper slopes on average, and the accumulator will soon be far away from the decision boundary, so easy
decisions can be made quickly. Weaker, less consistent evidence will result in meandering trajectories with shallower slopes on average, and even
after lengthy accumulation periods, the accumulator may not be far from the decision boundary, leading to slow, more error-prone decisions. In
tasks in which the subject determines the duration of the decision process, known as ‘reaction time tasks,’ the subject commits to a decision
when the evidence reaches a bound (+C or "C in the figure); the reaction time is determined by when the bound is reached, and the decision
choice is given by which bound was reached. (b) Average neural responses from monkey PPC (area LIP) during the period of decision formation
in the random dot motion discrimination task [27]. After a delay, responses exhibit ramping response profiles with slopes that depend on stimulus
strength. Stronger motion leads to sharper slopes and weaker motion to shallower slopes. This corresponds to the average trends predicted by
the evidence accumulator model. (c) Diagram of interconnected brain regions that have been demonstrated to exhibit responses profiles
correlated with accumulating evidence. These areas thus serve as candidates to be involved in the evidence accumulation process.
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effects, with contralateral responses speeded up even
while, surprisingly, ipsilateral responses were favored
[38]. Finally, in the PPC, Hanks et al. found that
whole-trial microstimulation could be interpreted as add-
ing a constant offset to the accumulator variable [39],
although they acknowledged that their data ‘cannot rule
out the possibility that some of the observed effects are
due to antidromic activation of other areas.’ This concern
regarding antidromic activation applies to all microstimu-
lation studies, and is consistent with the later claim that
microstimulation acts mainly through activation of axons
[40] (but see [41]). The antidromic activation issue is not a
concern with more recent inactivation studies to be
described below. Despite these many studies, unraveling
the neural circuit mechanisms underlying the accumula-
tion process has remained a challenge, and major funda-
mental questions are still unanswered or even
unaddressed. Which brain regions are necessary or not
necessary for the evidence accumulation process? Where
in the brain is evidence accumulation actually comput-
ed — perhaps in brain region(s) not yet recorded from?
What is the macro-circuit and micro-circuit architecture
that supports the gradual accumulation computation?

New tools and animal models for studying
gradual evidence accumulation
To assist in addressing these questions, Brunton
et al. developed a rat model of a perceptual decision task
dependent on gradual accumulation of evidence (‘Poisson
clicks’ task [42!!]; see also [43,44]). Rats were presented
with two simultaneous trains of randomly timed auditory
clicks, one to their left, the other to their right, and were
trained to orient at the end of the stimulus towards the
side that had the greater total number of pulses. As with
the primate RDM task, trial difficulty could be titrated by
the experimenters, in this case by controlling the left:
right ratio of the Poisson rates that generated the random
pulses. The highly variable yet very precisely known
timing of the pulses ensured that stimulus space was
thoroughly explored. It provided rich information that
gave statistical power to a trial-by-trial decision process
model that took into account the timing of each individual
click, and that allowed estimating multiple parameters of
the decision process. Together with model-free analyses
that supported the main conclusions, the model provided
strong behavioral evidence that the rats were indeed
using gradual accumulation of evidence to perform the
task. The door was open for using a cheap, small, tractable
mammalian animal model for studies of evidence accu-
mulation.

Using rats trained to perform the Poisson clicks task,
Hanks, Kopec, et al. recorded from two cortical regions
in the rat brain, the rat PPC and the frontal orienting fields
(FOF; [45!!]). On the basis of their connectivity with
other brain regions and their physiological properties,
these had been suggested as analogous or perhaps even

homologous to the two key primate regions PPC and
FEF, respectively [46,47]. As in the primate, Hanks,
Kopec, et al. found that neurons in the rat regions had
trial-averaged ramping firing rates during the process of
decision formation. Further, the slope of the ramp was
steeper for stronger evidence — again, just as had been
observed in the primate brain regions. Also as in the
primate, traces were qualitatively similar across the two
recorded regions (Figure 2a,b). The similarities across
species suggested that rats and primates might be using
similar circuits and algorithms to solve the task. Whether
this is indeed the case remains an open question, of
course. But it became clear that a fruitful comparison
and intellectual exchange across model species was pos-
sible.

The pulsatile nature of the Poisson click stimulus, com-
bined with a model-based estimate of each trial’s evolu-
tion of the accumulator, allowed Hanks, Kopec et al. to
perform two analyses that in previous primate work had
required additional experiments. First, by computing the
click-triggered average firing rate, it was possible to esti-
mate the impact of a single evidence pulse on a neuron’s
firing rate. A perfect accumulator would respond with a
permanent change in its value. Both PPC and FOF were
found to respond to an evidence pulse with sustained
changes in firing rate, albeit with a slow decay in the case
of the FOF (see Figure 2c,d and see [48] for the corre-
sponding primate PPC experiment). Second, the Brunton
et al. model produced a moment-by-moment estimate of
the gradually evolving value of the evidence accumulator.
This meant that at each point in time, in each trial, Hanks
et al. had both a measure of a neuron’s firing rate and an
estimate of the value of the evidence accumulator. Col-
lating these paired measures across trials allowed building
‘tuning curves,’ plots of average firing rates as a function
of the variable of interest, which in this case is the value of
the accumulator.

We note that this model-based approach combines firing
rate measurements with knowledge of the full, detailed
within-trial dynamics of the sensory stimulus as well as
the animal’s behavior. It is thus very different to a variety
of interesting methods that have focused entirely on
statistical analyses of neuronal firing [28,49,50!]. Future
work combining both types of approaches will be valu-
able.

The new tuning curve analysis tool revealed that, on
average across the population, tuning curves in both
the PPC and the FOF were relatively stable during the
decision formation. Thus, although the value of the
accumulator changes during the course of a trial, the
mapping from accumulator value to firing rate does
not. But while tuning curves in PPC were found to be
smooth functions of the value of the accumulator —
indicating that the graded value of the accumulator could
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Characteristics of rat PPC and FOF during accumulation of evidence based decision making, from [45!!]. (a) Average neural responses in rat PPC
during the Poisson Clicks task. Trials are grouped by average stimulus strength. Similar to monkey PPC, responses exhibit ramping profiles that
depend on stimulus strength. (b) Same as a for FOF. (c) Click-triggered average responses for rat PPC during the Poisson clicks task. Individual
clicks have a measurable and sustained influence on responses in PPC. (d) Same as c for FOF. Individual clicks also produced a sustained
response, with a magnitude that slowly but significantly decayed over hundreds of milliseconds. (e) Time-average population comparison of tuning
curves for accumulating evidence in PPC and FOF. PPC shows a smoothly graded relationship, while FOF shows a sharper dependence on the
sign of the accumulator value. (f) Bias caused by 500-ms unilateral inactivation of FOF with halorhodopsin during one of four epochs of the task:
before the stimulus (red), during the first half of the stimulus (yellow), during the second half of the stimulus (green), or during the movement period
(blue). Only peri-choice perturbation of FOF has a significant effect on decision making. A further experiment using half the inactivation time period
(250 ms) reached the same conclusion [45!!].
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be read out from PPC firing, as also found in the primate
PPC [51!!] — the tuning curves in the FOF were much
more step-like, with one cluster of firing rates for accu-
mulator values to one side of the decision boundary, and a
different cluster of firing rates for values on the other side
of the decision boundary (see Figure 2e). Thus what is
best read out from FOF firing is not the graded value of
the accumulator, but rather which categorical decision
report the subject should make if the trial ended at that
point in time. This suggests that the FOF may be more
strongly involved in categorizing the value of the accu-
mulator to drive the final choice than in computing the
graded accumulation itself. The tuning curve analysis
thus allowed distinguishing two regions with qualitatively
similar responses, and began the task of differentiating
which, out of the various steps in decision formation, each
region might be more closely associated with. More
specifically, the analysis suggested a simple serial organi-
zation in our fully trained rats, in which the graded value
of the accumulator is computed in the PPC, and then read
out from there to be turned into a more categorical
representation in the FOF; which in turn eventually
drives the categorical motor acts with which the animal
reports its decision. In this serial model, activity in both
regions is critical for task performance, but activity in the
FOF is required specifically near the time when the
animal is triggered to report its decision (the ‘GO
cue’), since that is when the overall decision process
needs to read out on which side of the decision boundary
the accumulator value lies. As we describe below, this
serial model turned out to be wrong.

Perturbation studies
One key advantage of rodents is that computerizing and
parallelizing behavioral training across subjects can pro-
duce a sufficient number of trained animals to make
multiple perturbation experiments viable. By their very
nature, perturbation experiments alter the brain, and
therefore tend to be used very sparingly when individual
animals are expensive in terms of cost, time, or effort
involved in their training. For example, producing
50 trained subjects to troubleshoot and deploy a new
perturbation technique can be prohibitively expensive
with non-human primates. By contrast, it is straightfor-
wardly practical with computerized, parallelized rodent
training.

The tens of milliseconds time resolution afforded by
optogenetic inactivation, in this case using the virally
delivered, light-activated chloride pump eNpHR3.0
[52] injected unilaterally into the FOF, allowed probing
and confirming the hypothesis described above about the
specific times when activity in the FOF would be re-
quired (see Figure 2f; [45!!]). Model-based analysis of
performance impairments caused by unilateral, as well as
bilateral, hours-long pharmacological silencing of the
FOF [53!] provided further converging evidence for

the hypothesized role for the FOF: namely, that the
FOF’s main role in the task lies in categorizing the value
of the accumulator, an operation that occurs after the
graded evidence accumulation itself. Ongoing experi-
ments are further probing the hypothesis through tempo-
rally specific bilateral optogenetic inactivation of the
FOF.

By contrast to expectations, however, inactivation of the
PPC produced entirely negligible effects on performance
of the Poisson Clicks task [53!]. This was the case even
while the same inactivations had a large effect on inter-
spersed control ‘free choice’ trials [53!], and even though
PPC inactivations have a substantial effect on a different
auditory task involving parametric working memory [54].
These data suggest that despite its encoding of the graded
value of the accumulator, the PPC may play little to no
role in decisions driven by accumulation of evidence.
Supporting this idea, preliminary data reproduces the
PPC inactivation finding in visual evidence accumulation
tasks in primates [55], inactivation of the primate pulvi-
nar, which is the PPC-projecting region of the thalamus,
has no impact on decision choices in a related visual task
[56], inactivation of the primate PPC has no effect on
visual primate memory-guided tasks [57–60], inactivation
of mouse PPC has no effect on a somatosensory memory-
guided task [61!], and temporally specific inactivation of
mouse PPC in a visual memory-guided task has an effect
only during the sensory stimulus period, not the short-
term memory maintenance period [62]. While the PPC
could, perhaps, play a role in gradual accumulation as part
of a much larger redundant circuit in the Poisson Clicks
task, it is notable that out of six different rat regions
probed so far (medial prefrontal cortex and superior
colliculus (Hanks et al., unpublished data); anterior dorsal
striatum and auditory striatum (Yartsev et al., unpublished
data); and FOF and PPC), the only region for which
silencing has no impact on task behavior is the PPC.
Consequently, we consider the PPC to have the lowest
likelihood of being an important center of the causally
relevant circuit for gradual evidence accumulation.

By contrast to primate visual tasks and the rodent auditory
Poisson Clicks task, but consistent with Goard et al.’s
preliminary optogenetic inactivation data [62], hours-long
pharmacological inactivation of the PPC does impair
rodent visual short-term memory or evidence accumula-
tion tasks [63,64]. Immediately posterior to the rodent
PPC are a set of individually small visual areas, collec-
tively referred to as secondary visual cortex (V2; [65–67]).
With the precise definition of rodent PPC and the loca-
tion of its border with these V2 areas still highly uncertain
and a matter of active research [68–70], the observed
effects from inactivations targeting rodent PPC could
perhaps be due to inactivation spillover into one of the
many small V2 areas. The appeal of this possibility is that
it would make results across mouse, rat, and monkey
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consistent, for the difference in results between rodent
visual tasks versus primate visual tasks or rodent non-visual
tasks would be explained by the fact that spillover into the
relevant sensory cortices is not a concern in the latter two
cases. Even if this view were correct, the role of any such V2
subarea in accumulation of evidence tasks remains to be
determined and could not simply be basic sensory proces-
sing of visual stimuli [63]. Perhaps like the FOF, which we
have posited as being required for reading the output of the
accumulator, this region might be required for providing
visual sensory input to the accumulator, even while not
being involved in accumulation itself.

Further clarity on the role of the PPC will greatly benefit
from better definitions and knowledge about the topog-
raphy of brain regions near the location currently referred
to as ‘rodent PPC.’ We advocate reserving the name
‘posterior parietal cortex (PPC)’ in rodents to regions
displaying physiological and connectivity profiles similar
to those of the primate PPC, for example, no impact from
inactivation on visual accumulation of evidence tasks
[55], little anatomical input from primary visual cortex
[71,72], and strong connectivity with frontal regions, as is
the case with the anterior, as opposed to the posterior,
zones currently referred to as ‘rat PPC’ [70].

So where is the accumulator circuit?
Preliminary hints and research outlook
To study the macro-circuitry and micro-circuitry causally
responsible for gradual accumulation, we must first know
which brain regions are part of that circuitry. A region that
is part of the relevant causal circuit would be expected to
simultaneously satisfy three initial criteria: (1) inactiva-
tion of the region should have an effect on task perfor-
mance. More specifically, because there are different
sequential steps involved in the decision formation and
gradual accumulation is only one of them, (2) perturbation
during temporally specific periods that coincide with the
evidence accumulation period should impact perfor-
mance. And (3) the graded value of the accumulator
should be encoded in that region’s neural activity (as
assessed, for example, through the tuning curve method
of Hanks et al.). As described above, neither the FOF nor
the PPC satisfy all three criteria. Where in the brain are
the region(s) that do?

The data analytic and experimental tools developed to
study the PPC and the FOF are now being applied to
several rat brain regions, an endeavour facilitated by high-
throughput rodent training. Current unpublished data
(Yartsev et al.) suggests that while some subcortical regions
may be like the FOF in playing an important role in the
task, but not in gradual accumulation per se, at least one
other subcortical region appears to satisfy all three criteria,
and may thus become the first identified node in the causal
circuit for evidence accumulation. Assuming that this
preliminary conjecture is correct, by following projections

to, and projections from, the identified region, we may
finally be able to delineate and establish the relevant causal
circuit. Initial suggestions indicate that this may include
brain regions never before examined in the context of
accumulation of evidence.

We are thus in a particularly exciting time for research
into the neural underpinnings of the evidence accumu-
lator: once the relevant causal circuit is established, we
will at long last be able to probe, and empirically distin-
guish, the many theoretical accounts that have been
proposed [73–86]. In addition, methods to apply cellu-
lar-resolution imaging of neural activity to this problem,
with which to powerfully examine multi-neuronal popu-
lation codes [87], have recently been developed [88,89],
and the many genetic tools available in mice may soon be
brought to bear as well [90–92].

Finally, we emphasize our strong view that the develop-
ments in rodent model species described in this review,
while very exciting, are complementary to efforts in non-
human primates, in which sophisticated behavioral
manipulations can be most powerfully employed to reveal
important aspects of neural encoding and function, very
fine control over both sensory and motor responses can be
achieved in the visuomotor domain (e.g. [37,93]), and
which are an important link towards relating neurophysi-
ological findings to neural mechanisms in humans.
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