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Perceptual decisionmaking is the process by which animals detect, discriminate, and categorize information
from the senses. Over the past two decades, understanding how perceptual decisions aremade has become
a central theme in the neurosciences. Exceptional progress has beenmade by recording from single neurons
in the cortex of the macaque monkey and using computational models from mathematical psychology to
relate these neural data to behavior. More recently, however, the range of available techniques and para-
digms has dramatically broadened, and researchers have begun to harness new approaches to explore
how rodents and humans make perceptual decisions. The results have illustrated some striking conver-
gences with findings from the monkey, but also raised new questions and provided new theoretical insights.
In this review, we summarize key findings, and highlight open challenges, for understanding perceptual
decision making in rodents, monkeys, and humans.

Introduction
The study of perceptual decisionmaking within the cognitive and
neural sciences seeks to understand how animals detect,
discriminate, and categorize information from the senses. Over
the past quarter of a century, a canonical theory has emerged
of how perceptual decisions are made in the mammalian brain.
Inspired by a marriage of quantitative modeling and neural re-
cordings in non-human primates, the proposal states that neu-
rons in sensorimotor areas, prominently including the parietal
and dorsal prefrontal cortex, contribute to perceptual decisions
by optimizing input signals through repeated sequential sam-
pling and linear integration to a fixed decision threshold (Gold
and Shadlen, 2007; Schall, 2003). This work has brought the
study of perceptual decisions to the fore within neuroscience
and psychology, and has exemplified the benefits of convergent
mathematical and biological approaches to understanding brain
function.
However, the last 5 years have seen a tremendous diversifica-

tion of the theories and methods that are available to study
perceptual decision making, and have thrown wide open a num-
ber of central questions concerning both the computation of de-
cision variables and their expression in neural circuits. Building
on the foundational work using monkeys, there has been an
expansion toward studies employing rodents, which allow ac-
cess to a greater range of experimental methods to measure
and manipulate neural activity, and studies involving humans,
which permit the investigation of a broader range of complex
cognitive behaviors. In the first half of this review (section 1),
we describe new methodological approaches using monkeys,
rodents, and humans, and discuss how the resulting theoretical
insights have begun to reshape the field. We separate this into a
set of three sections organized around each model system. In
the second half of the review (section 2), we discuss three areas
that offer great promise for future research linking model sys-

tems. Each of these sections highlights existing work that cuts
across species while noting directions where stronger connec-
tions may provide insights not possible in any model system
alone.

Canonical Perspectives
Perceptual decisions involve the conversion of noisy sensory
signals to a discrete motor act. Psychophysical tasks allow re-
searchers to control the nature and quality of sensory input
variables, and to reward the animal for specific sensorimotor
behaviors. For example, a macaque monkey viewing a random
dot kinetogram (RDK; a field of randomly moving dots) might
receive a liquid reward for producing a saccade to a spatial
target that it has learned to associate with a given motion direc-
tion (Newsome and Paré, 1988) (Figure 1A). Where information
quality is low (for example, when most dots move randomly,
and only some in a coherent direction), decisions can be
optimized by repeatedly sampling sensory information and inte-
grating (i.e., summing) the resulting direction estimates over
time. Accordingly, a long tradition in mathematical psychology
has argued that perceptual decisions are initiated when cumula-
tive estimates of noisy sensory variables reach a criterion
response threshold (Wald andWolfowitz, 1949). In one canonical
version of this model, with its roots in decision-theoretic ac-
counts of binary choices, decisions and their latencies are
principally controlled by the (drift) rate at which relative informa-
tion in favor of each of two choices is acquired, the amount
of stochasticity (noise) in the representation of this signal, and
the level of cumulative information at which choices occur
(threshold). This ‘‘drift-diffusion’’ model (DDM) successfully
accounts for the empirically measured function that relates deci-
sion speed and accuracy, and elaborations thereupon can ac-
count for the shape of the observed distribution of response
times for both correct and error trials under manipulations of
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signal quality, time pressure, and the relative probability or
reward value of either response (Bogacz et al., 2006; Ratcliff
and Rouder, 1998; Ratcliff et al., 2016).

Building on this algorithmic framework for understanding deci-
sion making, the neural mechanisms underlying perceptual
choices have been studied in the macaque monkey using extra-
cellular recordings from single neurons. Research has focused
on cortical neurons that encode task-relevant sensory signals,
such as motion direction in visual area MT (Britten et al., 1993)
and vibrational frequency in somatosensory area S1 (Hernández
et al., 2000), and those that fire in advance of a choice of the rele-

Figure 1. Challenges for Understanding
Perceptual Decision Making in Monkeys
(A) The random dot motion discrimination task that
has served as a foundational task for understanding
neural contributions to perceptual decision making.
A monkey maintains eye fixation while presented
with an RDK, consisting of a field of dots that is
refreshed at regular intervals. On each refresh, a set
fraction of dots are replotted with coherent motion
toward a choice target and the rest are replotted
randomly. The monkey is rewarded for making a
saccade to the target corresponding to the direc-
tion of the coherent motion. In the reaction time
version of this task, the monkey freely responds
when it is ready.
(B) Two models for single-trial dynamics that yield
ramping trajectories when averaged across trials.
The left panel shows the canonical view that indi-
vidual trial spike rates meander in the fashion of a
drift-diffusion process with a terminating bound at
the upper extreme. The right panel shows an alter-
native model where individual trial spike rates step
up or down with the step direction and step time
determined stochastically. Reprinted from Latimer
et al. (2015).
(C) Unilateral reversible inactivation of LIP with
muscimol causes negligible effects on choices in a
pulse-based motion discrimination task. A lack of
effect is also seen following unilateral LIP inactiva-
tion when both choice targets are placed in the
hemifield contralateral to the inactivated hemi-
sphere. Reprinted from Katz et al. (2016).

vant option, such as the lateral intraparietal
cortex (LIP) and frontal eye fields (FEFs)
for saccadic choices (Hanes and Schall,
1996; Shadlen and Newsome, 1996) and
premotor cortex for manual choices (Cisek
and Kalaska, 2005; Romo et al., 2004). In
LIP and FEF, a number of findings support
the view that neurons mediate decisions
between rival saccadic responses. These
findings have been reviewed extensively
elsewhere (Gold and Shadlen, 2007; Huk
and Meister, 2012), but we summarize
them briefly here. First, after a stereotyped
dip in activity locked to stimulus onset,
average firing rates in LIP and FEF in-
crease steadily when the sensory evi-
dence favors a saccade toward a target
in the neuron’s response field, and
decrease steadily in advance of responses

to the opposing target. Second, the buildup rate depends on the
quality of the sensory information, e.g., the level of motion coher-
ence in the stimulus, with steeper slopes for stronger evidence.
Third, when response times are controlled by the monkey, firing
rates reach a common level prior to responding in the neurons’
preferred directions irrespective of signal quality, as if a criterion
threshold or bound had been breached (Roitman and Shadlen,
2002). In other words, there is evidence that at least a subset
of oculomotor neurons encode cumulative tallies of sensory in-
formation that favor a saccade toward a given spatial target, in
close correspondence to the drift rate parameter in the DDM
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(Gold and Shadlen, 2007). The relative effects of microstimulat-
ing MT and LIP on decision accuracy and latencies are also
consistent with simulations that increase the rate of arrival of
sensory information and boost the cumulative information tally,
respectively (Ditterich et al., 2003; Hanks et al., 2006). This
work has prompted a compelling argument that LIP and FEF
subserve linear integration of sensory inputs during oculomotor
choices, providing a neural implementation for approximating
the optimal principles of the sequential sampling algorithm
proposed by Bayesian decision theory.

Section 1: Insights from New Approaches
1.1 New Challenges for Understanding Perceptual
Decision Making in Monkeys
Recently, however, challenges have arisen to the canonical
perspective described above. New work with non-human pri-
mates has emphasized the heterogeneity of neural responses
in putative decision areas, furnished new statistical ap-
proaches for unravelling single-trial neural response dynamics,
and questioned the causal role of LIP in decision formation
(Churchland and Kiani, 2016). However, we argue that these
challenges have strengthened, rather than weakened, our
foundational understanding of how the brain makes perceptual
decisions, by offering new opportunities to disclose the neural
mechanisms at the microcircuit level (Murakami and Mainen,
2015).
The link between LIP responding and an integration-to-bound

computation was initially forged by pooling average responses
over selected subsets of neurons under stereotyped task condi-
tions, where one choice target was positioned centrally in the
response field of the recorded neuron and the other target was
placed in the opposite hemifield. While there were good reasons
to do this, pooling across neurons may obscure response vari-
ability (Churchland and Kiani, 2016), and stereotyped experi-
mentation can paint an oversimplified picture of neural encoding
(Huk and Meister, 2012; Machens et al., 2010; Murakami
and Mainen, 2015). For example, LIP neurons exhibit diverse
responsemotifs that are strongly modulated by sensory andmo-
tor-related variables when these are teased apart (Bennur and
Gold, 2011; Park et al., 2014) or through experiments that used
a flexible association decision task to separate sensory-driven
from motor processes (Bennur and Gold, 2011). The diversity
of responses also includes transient bursts of activity that scale
with the salience of the cues that signal response contingencies
(Leathers and Olson, 2012) and responses altered by other deci-
sion-irrelevant factors such as saccadic target duration (Bisley
et al., 2004; Meister et al., 2013). In other words, neural signals
in LIP may only resemble an integration-to-bound signal on
aggregate, when heterogenous neuronal responses are aver-
aged together (Bennur and Gold, 2011; Meister et al., 2013;
Park et al., 2014). Beyond LIP, the FEF and dorsal striatum
have also been shown to have trial-average correlates of an inte-
gration-to-bound process in conjunction with other decision-
related signals (Ding and Gold, 2010, 2012). Interacting sensory
and decision factors (such as the input modality and response
location) are also encoded during decision tasks in rodent pari-
etal cortex (Raposo et al., 2014). Together, these findings have
led to the suggestion that mixed selectivity is a general principle

of neural coding across brain regions and species (Fusi et al.,
2016).
At the computational level, one advantage of mixed selectivity

is that it allows stimulus or task variables to be mapped onto a
wide range of complex responses using simple linear readout
operations alone (Fusi et al., 2016; Rigotti et al., 2013). Hetero-
geneous neural encoding may also allow information to be
maintained over multiple distinct timescales (Barak et al., 2013;
Bernacchia et al., 2011), potentially providing a circuit mecha-
nism for sustained firing during information integration (Tegnér
et al., 2002). However, it remains unclear how the brain meets
the computational challenge of finding the correct axis along
which to unmix (or ‘‘decode’’) multiplexed information from a
neural population. One possibility is that a substantial compo-
nent of observed heterogeneity arises because recording exper-
iments unwittingly sample neurons with distinct anatomical or
neurochemical properties. Knowledge of the cell types, cortical
layers, and projection patterns of recorded neurons may be
key to understanding the coding of decision information at the
level of neural microcircuits, a viewwe expand on below. Indeed,
some accounts have conversely argued that coding of decision
information in LIP is remarkably low dimensional, with homoge-
neous population firing rates sufficient to distinguish among
perceptual categories (Fitzgerald et al., 2013; Ganguli et al.,
2008). New statistical methods, including multivariate decoding
models (Park et al., 2014) and dimensionality reduction tech-
niques (Cunningham and Yu, 2014; Kobak et al., 2016), as well
as new multi-electrode recording methods that allow simulta-
neous data acquisition from multiple neurons (Kiani et al.,
2014b), are all likely to be helpful for understanding the press-
ing issue of how decision information is encoded in neural
populations.
The finding that average responses of individual LIP neurons

show gradual evidence-dependent firing rate increases does
not necessarily imply that these dynamics are present on single
trials. For example, sudden step-like changes in activity levels
that occur with differing latency will resemble a gradual buildup
when averaged together over trials (Figure 1B). Innovative statis-
tical methods have begun to ask whether LIP activity increases
are step-like or more gradual. One approach segregates two
sources of variance in neural responding: variance proportional
to the spike count and a residual variance component that fluc-
tuates between trials. Measured in this way, levels of variability in
neural data are insufficient to support a step-likemodel, but have
been argued to favor gradual evidence accumulation during
decision making (Churchland et al., 2011; Ding, 2015), although
this view has been challenged (Latimer et al., 2015). Another
approach uses model comparison to arbitrate among step-like
and gradual accounts of single-trial spike train generation. Not
surprisingly, the results depend critically on the functional form
of the models considered, and in particular on the assumed dis-
tribution of step latencies and types of steps allowed. When a
uniform distribution is assumed and the step direction is yoked
to the choice, dynamics again favor a gradual process for the
majority of LIP neurons (Bollimunta and Ditterich, 2012), but
models allowing a more flexibly parameterized non-uniform
latency distribution with probabilistic correspondence of step
direction and choice instead favor step-like dynamics for the

Neuron 93, January 4, 2017 17

Neuron

Review



majority of LIP neurons (Latimer et al., 2015) (Figure 1B). How-
ever, where sensory evidence is presented for a fixed latency
before a response is allowed, it becomes challenging to distin-
guish neural signals that precede an implicit categorical decision
from those that follow, and it is unclear how other multiplexed
signals described above may affect these sorts of analyses.
These contradictions have prompted a lively debate, and it will
fall to future work to offer a definitive arbitration among these ac-
counts. One important caveat is that at the population level, a
group of neurons that step up and down at different times could
have an equivalent impact on downstream neurons to a ramping
process, and so either conclusion is potentially compatible with
LIP involvement in implementing an evidence accumulation
process.

Another challenge to the role of LIP in implementing evidence
accumulation comes from recent work examining its necessity
for perceptual decision-making tasks. While microstimulation
of LIP biases choices and reaction times in an oculomotor deci-
sion-making task (Hanks et al., 2006), unilateral pharmacological
inactivation that eliminates spiking activity in this region has
negligible effects on behavior (Katz et al., 2016) (Figure 1C).
This is the case even when both choice options are contralateral
to the side of inactivation and thus both contained primarily
within response fields of neurons that are inactivated. Unilateral
LIP inactivation does, however, robustly bias free saccadic
choices away from the contralesional side (Balan and Gottlieb,
2009; Katz et al., 2016; Wardak et al., 2002; Wilke et al., 2012).
Together, these findings suggest that LIP does not play an oblig-
atory role in evidence accumulation, but it leaves open the pos-
sibility that LIP participates alongside other brain regions. During
the formation of the oculomotor decisions used in these experi-
ments, deviations in artificially induced saccades depend on
accumulated evidence (Gold and Shadlen, 2000), so one possi-
bility is that other parts of the oculomotor system with which LIP
is heavily interconnected may afford behavioral compensation
during evidence accumulation. This question can, in theory, be
addressed by inactivation methods that are faster than the time-
scales of compensation and/or through simultaneous perturba-
tion of multiple brain regions. In the next section, we describe
new approaches for studying perceptual decision making in
rodents that will very likely facilitate these sorts of experiments.
1.2 New Approaches for Studying Perceptual Decision
Making in Rodents
Recently, many researchers have turned to rodent models to
investigate perceptual decision making (Carandini and Church-
land, 2013). Remarkably, the rodent cognitive repertoire seems
well suited to the study of many key elements of perceptual de-
cision making, including evidence accumulation (Brunton et al.,
2013; Hanks et al., 2015), perception-to-action remapping
(Duan et al., 2015), and even decision confidence (Kepecs
et al., 2008). The rodent model has promoted a diversification
of sensory modalities under consideration, to include auditory
(Brunton et al., 2013; Znamenskiy and Zador, 2013), tactile
(Guo et al., 2014), olfactory (Uchida et al., 2006), and multi-
sensory (Raposo et al., 2014), as well as the visual studies that
dominate among non-human primate work. While more evolu-
tionarily distant from humans, rodents confer a number of
advantages over monkeys that have led to new insights into

the circuit mechanisms of perceptual decision making. First, ro-
dents are most readily amenable to the application of cutting-
edge technologies for neural measurement and manipulation,
such as optogenetics (Grosenick et al., 2015; Luo et al., 2008),
calcium imaging (Guo et al., 2014), and cell-type- and pro-
jection-specific tagging of neurons (Znamenskiy and Zador,
2013). Second, rodents increase the feasibility of large-scale
data collection, including multi-area mapping of the effects of
the neural perturbations (Guo et al., 2014) and semi- or fully auto-
mated, high-throughput training (Brunton et al., 2013; Poddar
et al., 2013). A third, and perhaps underappreciated, factor is
that lower investment costs incurred by rodent research
encourage a shift toward higher risk, higher reward experiments,
offering an opportunity to advance the frontiers of decision
research more rapidly.
Gradual, signal-dependent neural buildup has now been

observed in multiple rodent brain areas during accumulation of
decision evidence in the auditory domain. These include the
rat posterior parietal cortex (PPC) and frontal orienting fields
(FOFs), putative homologs of monkey PPC and FEF (Brody and
Hanks, 2016). One key line of research has relied on a new ‘‘Pois-
son click’’ task that involves discriminating whether auditory
pulses occurred more frequently in a stream coming from the
left or right (Figure 2A). Like the ‘‘Weather Prediction’’ task previ-
ously used in humans and monkeys (Kira et al., 2015; Knowlton
and Squire, 1993; Yang and Shadlen, 2007), this ‘‘discrete-
pulse’’ approach has the advantage that the stream of sensory
stimulation is fully known on each trial, allowing researchers to
estimate precisely the state of the accumulator at each time
point in the trial. Linking this estimate to neural signals permits
a characterization of neural tuning curves that describe how sin-
gle-cell responses map onto cumulative decision variables. For
example, the integration-to-bound framework implies that each
pulse should provoke a sustained increment in the firing rate of
the neuron, a prediction that has been validated in PPC (Hanks
et al., 2015) and is consistent with similar analyses in monkey
LIP in a visual decision task (Huk and Shadlen, 2005). In trying
to link these findings to the canonical perspectives provided by
monkey work, it is important to note the differences in sensory
modality and neuronal selection. In contrast to the monkey
work that typically involved visual targets with one centered in
the response field of a neuron pre-screened for selectivity, the
rodent work involved many neurons recorded simultaneously
with a fixed geometry for the sources of auditory information
and screening for selectivity performed afterward.
Although monkey studies have emphasized the commonal-

ities among decision signals in LIP and FEF, rodent work has re-
vealed key differences in parietal and frontal tuning curves for
accumulated evidence. Whereas firing rates display an approx-
imately linear relationship with the accumulator value in PPC,
in FOF they change more abruptly as the accumulator switches
sign (i.e., as accumulated evidence comes to favor a leftward,
rather than rightward, choice) (Figure 2B). In other words, pre-
frontal neurons encode a more discretized, categorical signal
than parietal neurons during evidence accumulation (Hanks
et al., 2015). This presumably makes prefrontal neural signals
more robust to rapidly fluctuating noise in sensory signals, and
suggests that they may exhibit dynamics that are even more
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step-like than PPC. We suggest that analyses such as these that
estimate the accumulator value on individual trials may provide
more traction for resolving whether neural responses on individ-
ual trials follow step-like or ramp-like dynamics (Latimer et al.,
2015), one of the challenges raised in the previous section.
Robustness of prefrontal representations may depend on time

to recover, as demonstrated by temporally precise, optogeneti-
cally mediated inactivation methods available in rodent models.
For example, inactivation of a related frontal region in themouse,
the anterior lateral motor cortex (ALM), only biases licking
choices in a tactile decision task near the time of decision report,
but not earlier (Li et al., 2016). Neural encoding of choice-related
signals recovered rapidly following this brief window, unless
inactivation was bilateral or interhemispheric communication
was blocked with callosal resection. Similarly, in the rat Poisson
click task, a bias to the ipsilateral streamwas provoked by unilat-
eral FOF inactivation that occurred late, but not early, in the
accumulation epoch (Hanks et al., 2015). This evidence for a
robust, choice-related signal in the prefrontal cortex of both
rats and mice suggests that it may correspond to a broader
property of macrocircuitry that could be observed in other spe-
cies, including monkeys and humans.
Interestingly, pharmacological inactivation of PPC had little or

no effect on perceptual decisions in the rat (Figure 2C), but did
impair free choices that did not depend on evidence accumula-
tion (Erlich et al., 2015), which was mirrored by the monkey work
highlighted above. This is also consistent with a further rodent
study employing both pharmacological inactivation and optoge-
netic perturbation methods, which found no effect of PPC inac-

tivation or perturbation on decisions about auditory pulse
frequency (Raposo et al., 2014). That same study did find that
inactivation reduced discrimination sensitivity in a visual pulse
task, but the pattern of results was more consistent with PPC
playing an auxiliary role, rather than being directly involved
in evidence accumulation (Licata et al., 2016). Together with
the monkey work described above, these studies furnish an
emerging picture in which the contributions of the parietal cortex
to perceptual decisions are not causally related to evidence
accumulation per se. Rather, it may relate to auxiliary processes
that can usefully employ an evidence accumulation signal and
contribute to decision making in conjunction with other brain
regions.
Another one of the challenges alluded to above is how tomake

sense of the heterogenous coding properties of putative deci-
sion neurons. Recent work has begun to shed light on this ques-
tion by stimulating distinct classes of neurons on the basis of
their axonal projection targets. This is currently possible in the
rodent, while still in nascent stages in the monkey, through
the use of retrogradely transported viruses that control of the
expression of optogenetic constructs in a projection-specific
manner (Figure 2D). For example, when rats were trained to
report whether a stream of auditory tones was composed of pre-
dominantly higher or lower frequencies, stimulation of tonotopic
regions of primary auditory cortex only biased choices toward
the corresponding frequency when the targeted neurons had
striatal projections (Znamenskiy and Zador, 2013). Relatedly,
response heterogeneity in motor preparatory activity during a
whisker-based object location discrimination task can be partly

Figure 2. New Approaches for Studying
Perceptual Decision Making in Rodents
(A) The ‘‘Poisson clicks’’ task, a rodent evi-
dence accumulation task inspired by the motion
discrimination task used in monkeys. In this audi-
tory discrimination task, rats fixate their nose while
presented with two competing streams of auditory
clicks, one from the left and one from the right.
These clicks are generated by Poisson processes
with different underlying rates. Rats are rewarded
for making orienting movements when cued to the
nose port corresponding to the side that played
the greater number of clicks.
(B) Neural ‘‘tuning curves’’ for accumulated evi-
dence for pre-movement side-selective PPC and
FOF neurons during the Poisson clicks task. This
shows the relationship between the accumulator
value from a continuous-time model of the deci-
sion process and neural firing rate. PPC has a
more linear encoding of accumulated evidence
compared to the more step-like encoding of
FOF. The latter seems more tightly linked to the
choice supported by the accumulated evidence.
Reprinted from Hanks et al. (2015).
(C) Bilateral inactivation of rat PPC has negligible
effects on choices in the Poisson clicks task.
Endpoints on each side show control trials with a
constantly illuminated LED cuing the correct side
that therefore did not require evidence accumu-
lation. Reprinted from Erlich et al. (2015).

(D) Method to selectively stimulate neurons in primary auditory cortex that project to the striatum. First, the striatum is injected with herpes simplex virus-1 (HSV)
that expresses Cre recombinase. HSV is transported in retrograde fashion up axons to cell bodies projecting to the injected region, some of which reside in
primary auditory cortex. This region is then injected with a Cre-dependent adeno-associated virus (AAV) driving expression of channelrhodopsin-2 (ChR2) in
neurons co-infected with Cre—that is, those projecting to the striatum. ChR2 is a light-sensitive ion channel that allows the artificial stimulation of neurons that
express it. Thus, this allows for the selective stimulation of primary auditory cortex neurons that project to the striatumwithout stimulating those that do not project
to the striatum. Reprinted from Znamenskiy and Zador (2013).
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explained by patterns of axonal projections (Li et al., 2015). Spe-
cifically, while layer 5 neurons in mouse ALM that project within
the cortex have mixed selectivity for ipsilateral and contralateral
movements, those that project to the brainstem are biased to-
ward contralateral movements. In other words, the projection
targets of relevant neurons may be a key factor in understanding
response heterogeneity in perceptual decision tasks. We also
note that this study combined optogenetics and cell-type-spe-
cific imaging in a total of 52 mice, a prohibitive cohort size in
monkey research. These findings again allude to the importance
of understanding how local circuit and long-range connections
contribute to decision making, a theme that may guide future
work in other model systems.
1.3 New Paradigms and Neural Decision Signals in
Humans
Unlike monkeys and rodents, humans can readily perform
complex decision tasks with minimal instruction. Moreover, sin-
gle-cell studies typically focus on just a handful of recording
sites, whereas macroscopic imaging techniques such as fMRI
offer the promise of revealing the wider brain networks involved
in making perceptual decisions. Thus, building on work in exper-
imental animals, over the past decade cognitive neuroscientists
have sought to identify canonical signatures of perceptual deci-
sion making in humans and to characterize the neural systems
involved at a whole-brain level.

Onemajor challenge is that fMRI measures neural activity indi-
rectly and aggregates over the activity of many millions of neu-
rons within a single voxel. This makes it difficult to directly probe
for neural selectivity to sensory or decision variables (e.g., mo-
tion direction) in psychophysical tasks such as the RDK para-
digm. One solution to the former problem has been to devise
discrimination tasks involving visual stimuli that preferentially
activate contiguous clusters of voxels within the extrastriate cor-
tex, such as faces and buildings (Heekeren et al., 2008). Like
firing rates in sensory regions (such asMT or the auditory cortex),
blood oxygenation level-dependent (BOLD) amplitude in these
regions scales with the relative strength of evidence for each
category (e.g., visibility of face > house in the fusiform region).
One approach has searched for brain regions that correlate
with the difference in relative BOLD signal amplitude in these
extrastriate areas, in line with the assumption that the decision
variable is a cumulative differential of sensory inputs. Like recent
rodent work, this approach has identified lateral portions of the
prefrontal cortex as a candidate structure (Heekeren et al.,
2004), and indeed, temporary inactivation of this region with
transcranial magnetic stimulation (TMS) dampens the estimated
drift rate in human perceptual decision tasks (Philiastides et al.,
2011).

However, due to the torpid nature of the BOLD signal, fMRI is
poorly suited to measuring neural dynamics on a millisecond
scale, making it difficult, for example, to distinguish neural
signals that occur before or after a decision. Accordingly, a
consensus has yet to emerge about how perceptual evidence
accumulation is expressed in fMRI signals (Mulder et al., 2014).
In rodents and monkeys, firing rates in posterior parietal neurons
grow as information is integrated toward a saccade or manual
action. By contrast, BOLD signals in homologous parietal re-
gions of the human tend to vary inversely with the level of evi-

dence in a perceptual stimulus, scaling instead with levels of
decision uncertainty or conflict. A similar pattern is observed in
other cortical regions, prominently including the anterior cingu-
late cortex and anterior insular cortex (Ho et al., 2009; Liu and
Pleskac, 2011; Wheeler et al., 2015). One explanation for this
apparent contradiction is that during speeded decisions, the
highest aggregate spiking activity in target-selective neurons
will be observed when evidence is weak or ambiguous because
on those trials, responses are slower and the buildup in firing
(although shallower) is more prolonged. Under the framework
of the DDM, the BOLD signal in parietal, cingulate, and insular
cortex is successfully predicted by the cumulative excursion
from zero of the best-fitting decision variable for a given trial or
condition (Basten et al., 2010; Ho et al., 2009). However, this
theory fails to explain why BOLD signals continue to scale with
decision uncertainty even in fixed-response settings, where
integration latencies are presumably constant, or why parietal
BOLD signals are stronger under regimes that favor speed
over accuracy (van Veen et al., 2008) (see below). An alternative
account appeals to the intuition that in LIP, the numbers of neu-
rons that are selective for the target response (e.g., a saccade to
the required target) are typically outnumbered by those coding
for competing responses. In the presence of other computa-
tional mechanisms, such as divisive normalization, many neu-
rons may be silenced when sensory signals are most reliable.
Even within target-selective neurons, stronger sensory signals
elicit steeper firing rate slopes but tend to build up from a lower
level on these trials, potentially reducing aggregate firing (Meis-
ter et al., 2013). Together, these factors further complicate the
relationship between sensory evidence accumulation and the
BOLD signal. Thus, for now predictions about how fMRI signals
vary during rapid information integration necessarily rest on un-
tested assumptions about the link between the BOLD signal and
underlying neural dynamics.
Unlike fMRI, magneto/electroencephalography (M/EEG) al-

lows the neural consequences of decision formation to be
directly charted with millisecond resolution (Kelly and O’Con-
nell, 2015). Once again, inventive experiments have been
conducted that dissociate relevant task variables at the macro-
scopic level. For example, when opposing perceptual decisions
involve lateralized hand responses, the amplitude of high-fre-
quency (gamma and beta band) MEG activity over motor
regions diverges steadily between hemispheres that are contra-
lateral and ipsilateral to the response effector (Donner et al.,
2009). These signals are attenuated on error trials, implying
that they are not merely response related, and like signals in
LIP, they begin earlier when an advance cue signals the likely
motion direction (de Lange et al., 2013) (see below). More
recently, EEG studies have identified a positive potential re-
corded over midline parietal electrodes that grows in a
signal-dependent fashion as sensory evidence accumulates
(Kelly and O’Connell, 2013; O’Connell et al., 2012). This poten-
tial (known as the CPP) terminates at a fixed plateau, mirroring
the firing rate acceleration observed in LIP neurons (Figure 3A).
Intriguingly, the same dynamics are observed during detection
of deviant stimuli that typically elicit the classic P300 potential,
with which the CPP shares a scalp topography, suggesting that
although they are differently named, these two potentials may
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be common manifestations of a dynamically growing decision
signal (Twomey et al., 2015).
An important next step for cognitive neuroscientists is to move

beyond the search for human signatures of sensory evidence
accumulation that mirror those found in the monkey, toward a
computational account of how those signals underpin perceptual
decisions. One promising approach, related to the pulsatile stim-
ulation approach favored by rodent researchers (Brunton et al.,
2013; Raposo et al., 2014), has been to develop tasks that involve
categorizing the information in a stream of discrete events (or
‘‘samples’’), each of which conveys partial evidence about the

correct response. For example, participants might be asked to
average the tilt in a sequential stream of visual gratings (Cheadle
et al., 2014;Wyart et al., 2012), themost frequent direction among
a series of arrows (de Lange et al., 2010), or the average size in a
succession of objects (Gorea et al., 2014; Hubert-Wallander and
Boynton, 2015). This allows researchers to characterize the
perceptual information (the disparity between one sample and
the next), decision information (the momentary information
conveyed by each sample), and response information (the cumu-
lative evidence for one choice over another) that accompany
each sample. In conjunction with EEG recordings, these

Figure 3. Neural Data and Models for Human Perceptual Decision Making
(A) The centro-parietal positivity (CPP) is a scalp EEG signal recorded over medial parietal electrodes (inset; red shows the maximum) that shows build-to-
threshold dynamics during the random dot motion task (inset). The buildup varies with coherence level (left panel), showing the steepest ramp for high coherence
events. The buildup terminates at a common plateau, irrespective of coherence left (right panel). Reprinted from Kelly and O’Connell (2013).
(B) Neural signals during accumulation of information from discrete samples. Right panel: a parietal potential co-varies negatively (at 250 ms) and then positively
(at 500 ms) with decision information. Center: the strength of neural encoding at 500 ms on each sample k positively predicts the behavioral weight given to
sample k, but negatively predicts the weight attributed to samples k + 1 and k ! 1. Right: this is indicative of a rhythmic gain control mechanism (shown
schematically for a tilt averaging task, right panel). Reprinted from Wyart et al. (2012).
(C) Left: selective integration model. Noisy sensory inputs are accumulated in parallel streams. A central ‘‘bottleneck’’ stage mediates competition among
samples, processing the winning sample with relatively higher gain, controlled by a selective gating parameter. ‘‘Late’’ noise also arises during integration. Right:
under thismodel, when late noise is absent, perfect integration yields greatest accuracy (cyan line). However, as late noise grows, simulated observers with higher
late noise perform better. The same is true for human participants. Reprinted from Tsetsos et al. (2016).
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quantities can be regressed against neural signals to reveal their
respective encoding over the occipital, parietal, and motor
cortices, respectively (Wyart et al., 2012). Going a step further,
it is then possible to link the single-trial residuals from this analysis
to choices, disclosing how encoding at each neural stage pre-
dicts behavior, an approach related to the calculation of neural
‘‘choice probabilities’’ in single-cell recordings (Nienborg and
Cumming, 2009). This class of analysis has revealed that the
strength of parietal encoding of momentary decision information
predicts the multiplicative weight (or influence) that each sample
carries in the final choice (Figure 3B),whereas the premotor signal
scales with an additive bias to respond with the left or right hand
(Wyart et al., 2012). In other words, sensory information may be
transformed in distinct, sequential multiplicative and additive
stages in the parietal and premotor cortex, respectively.

A key open question concerns the sources of noise or loss that
corrupt perceptual decisions (Brunton et al., 2013; Hunt, 2014;
Renart andMachens, 2014; Scott et al., 2015; Wyart and Koech-
lin, 2016). While some have suggested that human decisions are
limitedmainly by noise arising during sensory encoding (Körding,
2007), a traditional view from cognitive science has emphasized
that human information processing is capacity limited, and that
sensory information must pass through a central ‘‘bottleneck’’
before influencing decisions (Broadbent, 1958). One emerging
proposal argues that parietal cortex may filter information
in time, acting as just such a bottleneck during human percep-
tual decisions. Over the parietal cortex, neuroelectric activity
measured with EEG fluctuates slowly, and the influence that
each sample of evidence wields over the decision depends on
its timing with respect to this rhythm, with samples falling at
the preferred phase of parietal oscillations carrying more weight,
and those falling in the anti-preferred phase being relatively over-
looked (Spitzer et al., 2016; Wyart et al., 2012) (Figure 3B). This
suggests that the central bottleneck may occur because a fluc-
tuating gain control mechanism resolves competition among
temporally proximal samples of information, a form of ‘‘active
sensing’’ that has also been observed in monkey sensory
cortices (Lakatos et al., 2008). This variable-gain mechanism
might explain why behavioral data in decision tasks are best ex-
plained by models that incorporate between-trial drift rate vari-
ability in addition to within-trial noise (Ratcliff and Rouder,
1998). A similar approach has also been used to understand
how attention modulates perceptual decisions, with the obser-
vation that dividing attention does not dampen multiplicative
weighting of sensory inputs over the parietal cortex, but incurs
a loss at a later stage, as if information ‘‘leaks’’ away during ad-
ditive integration in motor circuits (Wyart et al., 2015). Further
work has explored competition arising between sequential sam-
ples within a trial, suggesting that undue weight is given to infor-
mation that is consistent with the current cumulative decision
variable, and that these consistent samples are encoded more
strongly over parietal cortex, a form of confirmation bias in
human perceptual choices (Cheadle et al., 2014).

Cognitive studies of human judgment have traditionally
emphasized that decisions are limited not just by sensory noise
but also by processing capacity, with an additional source of in-
formation loss incurred as perceptual signals are discretized for
maintenance in central circuits. Limitations in central processing

may be one reason why humans show irrational biases and re-
versals of preference that fail to maximize financial outcomes
(Kahneman, 2011). To provide a process-level explanation for
these economic suboptimalities, recent work has extended
the sequential sampling framework that underpins perceptual
choices (Busemeyer and Townsend, 1993; Krajbich et al.,
2010; Summerfield and Tsetsos, 2015). One key motivating intu-
ition is that each discrete sample (e.g., a grating) conveys unique
information about the probability that an alternative will be re-
warded, just as each attribute of an economic prospect partially
signals its value (e.g., when purchasing a car, onemight consider
the price, reliability, and fuel economy). A new sequential
sampling model, known as ‘‘selective integration,’’ argues that
when choosing among two simultaneous streams of discrete
samples, simultaneously occurring events compete for limited
neural resources, with humans attributing greater multiplicative
weight to the sample (e.g., a symbolic number) with higher value,
as if they attend preferentially to salient choice attributes (Tset-
sos et al., 2012) (Figure 3C). This theory offers a process-level
account of human violations of axiomatic rationality, including
framing effects, intransitivity, and non-independence from
irrelevant alternatives (Tsetsos et al., 2012, 2016). Interest-
ingly, although selective integration is suboptimal for an ideal
observer, it can be shown to maximize economic outcomes un-
der the assumption that decisions are limited not just by early
sensory uncertainty, but also an additional, ‘‘late’’ source of
noise that arises when multiple attributes or features are com-
bined to make a decision (Scott et al., 2015; Tsetsos et al.,
2016; Wyart and Koechlin, 2016) (Figure 3C). These paradigms
provide a new opportunity to harness the sequential sampling
framework to offer a normative account of human economic
biases, uniting the study of perceptual and value-guided choices
under a common framework (Summerfield and Tsetsos, 2012).
However, more work is needed to understand the neural under-
pinnings of these effects, work that will likely benefit from in-
sights garnered from multiple model systems. In the following
sections, we highlight three topics within the study of perceptual
decisions where connections have already begun to be formed
between findings that cut across species.

Section 2: Opportunities to Bridge across Model
Systems
2.1 Deciding When to Decide: The Speed and Accuracy
of Perceptual Decisions
For all animal species, perceptual decisions are made in the
context of ongoing motivational states. For example, a thirsty
monkey will be motivated by the receipt of liquid reward that
follows correct trials, or a human participant might wish to com-
plete an onerous psychophysical experiment in the shortest
possible time. In order to satisfy ongoing goals, observers
must decide both what to decide (e.g., left versus right) and
when to decide (now versus later). Studies have begun to
address how this is achieved at the neural level in both human
and non-human subjects.
Mathematical models of the decision process (such as the

DDM) at the algorithmic level propose that responses are initi-
ated when cumulative decision information achieves a fixed cri-
terion value, i.e., when a flat decision ‘‘bound’’ is reached. An
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important part of the decision policy is thus to specify the height
of the bound. Because the precision of noisy decision signals
gradually increases during sequential sampling, a high bound
will lead to slow but more accurate decisions, whereas a low
bound will reduce deliberation times at the expense of perfor-
mance. Participants can thus trade off speed and accuracy by
setting the height of the bound, effectively ‘‘deciding when to
decide’’ (Bogacz et al., 2010). Extant behavioral data suggest
that they do so approximately optimally (Simen et al., 2009).
The claim that firing rates in LIP are involved in the implemen-

tation of a DDM-like algorithm by encoding the value of a
cumulative decision variable is bolstered by the observation
that neural signals reach a common, signal-independent level
prior to a saccade, as if a criterion firing rate had been achieved
(Roitman and Shadlen, 2002). However, a prediction of this
account is that the threshold value should vary systematically
under regimes that differentially emphasize speed and accuracy.
In themonkey, a number of recent studies have varied incentives
to encourage more cautious or incautious responding, while
recording from FEF, LIP, premotor cortex (PMd), and primary
motor cortex (M1) (Hanks et al., 2014; Heitz and Schall, 2012;
Thura and Cisek, 2016). While thought-provoking differences
are apparent between these studies, they nevertheless provide
an emerging picture of how neural correlates of decision vari-
ables change when speed and accuracy are traded off. In all
three studies, firing rates under speed emphasis started higher
and/or ramped up more quickly than under accuracy emphasis,
a feature not predicted by the standard DDM (Figure 4). Further
evidence for heightened gain under speed pressure emerges
from analysis of local field potentials in FEF (Heitz and Schall,
2013). In addition, none of the studies showed reductions in
the neural threshold preceding speeded decisions, the first-
order prediction based on the standard DDM. Even more sur-
prisingly, one of the studies reported a reduced neural threshold
under the conditions of accuracy emphasis compared to speed
emphasis (Heitz and Schall, 2012). The authors postulated an
additional stage of leaky downstream integration to account
for this difference, but that suggestion has been more recently
challenged (Cassey et al., 2014). Nonetheless, all three studies
are in agreement that the standard bounded accumulation ac-
count provides an incomplete picture of how neural responses
contribute to the timing of perceptual decisions. Interestingly,

both increased pre-decision response levels and evidence-inde-
pendent ramping for the speeded condition predict overall
stronger neural responses under speed pressure, and are thus
consistent with the finding that BOLD signals in parietal and pre-
frontal regions are higher when speed is emphasized (van Veen
et al., 2008). These findings illustrate how neural data can help to
inform psychological models of perceptual decisions and link
human findings to neural mechanisms.
In psychophysical studies, experimenters can choose to

manipulate the reliability of sensory signals (e.g., level of motion
coherence) over either blocks or trials. In the former case, reward
rates will be maximized by the application of a fixed bound, i.e.,
one with a height that remains constant across each trial within a
block (Wald and Wolfowitz, 1949). The optimal height of the
bound depends on the observer’s belief about the signal reli-
ability, which in the latter case varies over the course of the trial.
In particular, after prolonged deliberation, it is more likely that the
current trial is one with low signal quality, where the information
obtained from further sampling may be limited. Optimal models
thus predict that under unknown sensory reliability, the height of
the bound should ‘‘collapse’’ over time (Deneve, 2012; Drugo-
witsch et al., 2012; Frazier and Yu, 2008). However, the empirical
question of whether decisions about signals with unknown reli-
ability respect a collapsing bound algorithmically, and how this
might be implemented neurally, represents a new frontier for
research in perceptual decision making.
One emerging view is that decisions may be driven to the

bound by a strong, evidence-independent quantity referred to
as an ‘‘urgency’’ signal, which effectively implements a collapsing
bound by inflating later accumulator states away from zero. One
line of evidence for such a signal can be observed by analyzing
trials on which sensory evidence is entirely ambiguous (e.g.,
0% coherence), where firing rates in LIP nevertheless
grow toward the bound associated with the eventual response
(Churchland et al., 2008). Indeed, LIP neurons showgrowing firing
rates up to a response when monkeys estimate the time elapsed
across an interval, consistent with an evidence-independent
component to their responses (Janssen and Shadlen, 2005). A
heightened urgency signal may also explain the generalized in-
crease in neural gain—described above—observed under speed
relative to accuracy pressure (Hanks et al., 2014), and comple-
mentary findings regarding post-error slowing (Purcell and Kiani,

Figure 4. Decision Urgency
Evidence for a stimulus-independent ‘‘urgency’’
signal during speeded decisions. Three studies
(Hanks et al., 2015; Heitz and Schall, 2012; Thura
andCisek,2016) showevidence thatwhenmonkeys
make perceptual decisions under a reward regime
that encourages speed over accuracy, decisions
build up to threshold faster. The left panel (A) shows
shows LIP neurons recorded in a motion discrimi-
nation, saccadic decision task. Themiddle panel (B)
shows movement neurons recorded in FEF in a vi-
sual search, saccadic decision task. The right panel
(C) shows PMd neurons recorded during discrete
visual accumulation, reaching decision task. Inter-
estingly, none of these studies report evidence for
reduced terminal firing rates (i.e., decision threshold)
under speed compared to accuracy emphasis,
inconsistent with the predictions provided by the
standard DDM.
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2016). However, studies that have asked whether fixed or
collapsing bounds provide the best explanation of human and
monkey behavior in perceptual decision tasks have yielded
mixed results. One large-scale analysis of five datasets found
that humans performing a limited number of trials were best
described by a fixed bound, whereas a dynamic bound captured
better the performance of highly trained monkeys (Boehm et al.,
2016; Hawkins et al., 2015). Another, more controversial model
eschews the sequential sampling approach entirely, proposing
that decisions are initiated by the joint influence of an urgency
signal and momentary excursion of decision evidence from
zero (Thura et al., 2012), but this intriguing account has been chal-
lenged on numerous grounds (Winkel et al., 2014).While the inter-
esting notion that a stimulus-independent neural signal controls
the timing of decisions is likely to have a strong influence over
coming years, its existence remains controversial in humans
and monkeys, and it has yet to be systematically explored in
rodent model systems. For rodents, this will require the develop-
ment of tasks complementary to those described here for hu-
mans and monkeys where ‘‘deciding when to decide’’ becomes
more important, as opposed to most of the rodent work that we
described above (where the timing of the decision report was
cued). Techniques available in rodents hold the promise of help-
ing to determine the circuit mechanisms responsible for urgency
signals, which will help to explain their source, and allow more
refined tests of their role in decision making.
2.2 Modulation of Perceptual Decisions by Probability
and Value
Another topic that has begun to see complementary approaches
using multiple model systems is the study of how probability and
value modulate perceptual decisions. In natural environments,
sensory stimuli occur with differing frequency and are associ-
ated with differing reward and punishments. One long-standing
concern in mathematical psychology is how noisy sensory evi-
dence is combined with contextual information encoding the
probability or value of choice alternatives, in order to produce
an optimal decision. Recently, studies have begun to explore
how humans and monkeys achieve this at both the behavioral
and neural levels.

Where one response (e.g., leftward target) is associated with
more positive or less negative outcomes, reward rates will be
maximized by selecting it more often. Similarly, stimuli (e.g., left-
ward motion) that have higher base rates of presentation should
elicit responses more readily than those that occur infrequently.
Where signal quality is known, this can be achieved under the
sequential sampling framework via a simple additive offset to
the starting point of evidence accumulation toward the expected
bound (Bogacz et al., 2006). However, when signals are of un-
known sensory reliability, for example, where coherence levels
are randomly intermixed between trials, an additional sensory
time-varying component is required for optimal responding
(Moran, 2015). This is because prior information about stimulus
probability or value can be deployed most effectively when
sensory signals are weak or ambiguous, which is usually only
evident later in the deliberation process. Multiple studies
focused on LIP have asked how perceptual decisions are
modulated by stimulus value or probability, and these have
consistently observed an early increase in firing rates when the

saccadic target associated with the more probable or valuable
response falls within the neuron’s receptive field. This occurs
irrespective of whether responses are speeded (Hanks et al.,
2011) or where integration latencies are controlled by the exper-
imenter (Gold et al., 2008; Rao et al., 2012; Rorie et al., 2010), and
is consistent with LIP recordings conducted while the monkey
makes decisions about unambiguous sensory signals of varying
probability or value, confirming the view that the LIP signal
incorporates a range of contextual variables relevant to saccadic
choice (Platt and Glimcher, 1999). However, evidence for a
modulation that occurs during evidence accumulation has only
emerged in conjunction with reaction time decisions, in the
form of heightened stimulus-independent drift toward the bound
for the expected choice. This signal is akin to a biased version of
the urgency signal described above (Hanks et al., 2011), sug-
gesting a possible shared neural circuit mechanism for both.
We expect newer techniques available in rodents to help tease
apart contributions from distinct brain sources or microcircuit
components in testing this hypothesis.
Several human studies have also attempted to address

this question, typically using a combination of computational
modeling and functional neuroimaging (Summerfield and de
Lange, 2014). In humans, an additive offset in the origin of evi-
dence accumulation typically provides the best-fit behavioral
data (Mulder et al., 2012), and fMRI studies have reported cor-
relates of a bias signal in sensory cortex (Kok et al., 2014), as
well as parietal and prefrontal regions (Chen et al., 2015; Mulder
et al., 2012; Summerfield and Koechlin, 2010), during percep-
tual decisions about visual stimuli. However, it is hard to
know whether visual bias signals in these studies are a conse-
quence, or a cause, of any effects observed in higher brain
areas. More generally, a popular framework (known as ‘‘predic-
tive coding’’) suggests that priors and sensory evidence are in-
tegrated through reciprocal interactions between decision (e.g.,
parietal) and sensory (e.g., visual) regions, and this framework
has been used to interpret a wide range of human imaging
data in relation to this topic. The theory makes specific predic-
tions about various types of neural response that would be
observed in the cortical microcircuitry (Bastos et al., 2012),
but single-cell researchers are only just beginning to engage
with this hypothesis (Bell et al., 2016). In other work, how human
decisions are influenced by the potentially time-varying eco-
nomic value of stimuli and actions is a topic that has received
considerable recent attention (Rangel and Hare, 2010; Rush-
worth et al., 2012), but an overview of this literature is beyond
the scope of the current review.
2.3 Decision Confidence
For humans, perceptual decisions are often accompanied by a
strong subjective sense of certainty or uncertainty, which we
are often able to quantify when asked to report our ‘‘confidence.’’
Decision confidence has been studied in humans for more than
a century, but definitions have proven controversial, and no
consensus has yet emerged about what function, if any, confi-
dence may have across different species (Fetsch et al., 2014;
Meyniel et al., 2015; Pouget et al., 2016; Shea et al., 2014).
Nevertheless, rapid progress has been made in recent
years thanks to convergent, cross-species research, and evi-
dence for the neural implementation of decision confidence
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is beginning to emerge in rodents, monkeys, and humans
(Kepecs and Mainen, 2012).
Humans are able to report confidence explicitly on an interval

scale (‘‘I’m 70% sure I’m right’’). This behavior seems to require
reflection upon one’s own internal states, a class of computation
that psychologists define as ‘‘metacognitive’’ (Yeung and
Summerfield, 2012). Although it is not possible to elicit overt
subjective reports of decision confidence in experimental ani-
mals, techniques allow the measurement of whether animals
can use internal estimates of decision certainty to optimize their
behavior. One creative approach adapts the two-choice discrim-
ination paradigm by offering, after a subset of choices, a third
option that ‘‘declines’’ the choice for a small but certain reward
(Hampton, 2001) (opt-out task; Figure 5A). Subjects select this
option more often when signal reliability is low, and performance
is higher on those trials where the choice was voluntarily
accepted than when the decline option was not presented (Kiani
and Shadlen, 2009; Komura et al., 2013). Another elegant para-

digm offers a graded estimate of decision confidence in animals,
by imposing a variable delay to reward after most correct re-
sponses (and no feedback for errors) but allowing the animal to
restart the next trial at will (waiting task; Figure 5B). The time
that an animal was willing to wait for a reward is proportional
to its accuracy (Lak et al., 2014). These new paradigms circum-
vent many of the traditional criticisms associated with the study
of confidence in animals, and the findings suggest that rodents
and monkeys, as well as humans, have access to internal esti-
mates of decision certainty and use them to maximize outcomes
(Kepecs and Mainen, 2012).
In order to understand how confidence is encoded in neural

circuits, it is first necessary to come up with a formal definition
of how it is computed from sensory or decision information (Pou-
get et al., 2016). A traditional view states that confidence reflects
the divergence of a noisy decision variable from an indifference
point or decision criterion (Galvin et al., 2003). This simple theory
makes a key prediction: confidence should grow with signal

Figure 5. Decision Confidence
(A and B) Two tasks used to measure decision confidence in experimental animals. In the opt-out task (A), the animal (here, a monkey) first makes a perceptual
discrimination, and then, on a subset of trials, is offered a third option to ‘‘decline’’ the choice, which, when chosen, leads to a small but certain reward. Lower
confidence should result in a higher proportion of ‘‘sure bet’’ choices. In the waiting task (B), an animal (here, a rat) first makes a perceptual discrimination, and
then experiences a variable delay before reward on most correct trials. The rat either chooses to wait for the reward, or to initiate a new trial. The resulting waiting
times scale with accuracy and are putative estimates of the animal’s confidence. (A) was reprinted from Fetsch et al. (2014). (B) was reprinted from Lak et al.
(2014).
(C) The left panel shows how (inverse) decision confidence should vary with signal strength (here, odor mixture) on correct and incorrect trials, under a signal
detection model in which confidence is proportional to the absolute decision value. The same characteristic X-like pattern is observed in the firing rates of OFC
neurons performing the task. Reprinted from Kepecs et al. (2008).
(D) The relationship between time, decision value, and the (log odds) probability of a correct response in the DDM, when signal reliability is unknown. As time
passes, the variation in the decision value has minimal impact on the probability of a correct choice because if decisions are prolonged, it is likely that signal
reliability is low. This motivates the foreclosure of deliberation with an urgency signal, and provides the basis for a model of decision confidence. Reprinted from
Kiani and Shadlen (2009).
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reliability on correct trials, but fall with signal reliability on error
trials (Figure 5C, left panel; showing here the inverse pattern).
To understand why, consider the two Gaussian distributions
encoding sensory evidence for each category. The degree of
separation between the distributions is greatest for stronger sig-
nals, and so errors will only occur when a decision variable falls
close to the criterion (low confidence), whereas the converse is
true for weaker signals. Indeed, in the waiting task, confidence
estimated in this way successfully predicts how long a rat will
postpone initiation of the next trial (Kepecs et al., 2008; Lak
et al., 2014). Thus, one way of understanding confidence is
that decision information is read out from the frame of reference
of choice (e.g., probability of left versus right) and recoded in the
frame of reference of accuracy (probability of correct versus
error) in a distinct set of neural circuits (Insabato et al., 2010).

Evidence from rodents has highlighted the orbitofrontal cortex
(OFC) as a candidate site for this computation. In rats performing
an olfactory mixture categorization task, about 25% of neurons
show neural responses that exhibit an ‘‘X-like’’ pattern of positive
and negative correlations with signal strength on correct and
error trials, respectively (or the converse), consistent with pre-
dicted estimates of decision confidence on these trials (Kepecs
et al., 2008) (Figure 5C, right panel). Moreover, ablation of rat
OFC disrupts the otherwise monotonic relationship between
waiting times and accuracy (Lak et al., 2014). Despite difficulties
with identifying homologies among brain regions in rodents and
humans, it is salutary that functional neuroimaging studies have
also identified nearby polar regions of the frontal cortex as
contributing to human confidence judgments about both
perceptual and economic judgments (De Martino et al., 2013;
Fleming et al., 2010, 2012). These findings have led to a
converging perspective that the most anterior regions of the pre-
frontal cortex may participate in the computation of ‘‘metacogni-
tive’’ signals that allow an animal to reflect on its performance
and optimize behavior accordingly. However, other brain regions
may also be involved. For example, neurons in the pulvinar nu-
cleus of the macaque thalamus show a similar X-like pattern of
responding during an opt-out task, and silencing of these re-
sponses increased the tendency to decline without impairing
discrimination performance (Komura et al., 2013).

This perspective sees ‘‘confidence’’ and ‘‘certainty’’ as related
but separate quantities that are potentially computed in distinct
neural circuits (Pouget et al., 2016). An alternative is that confi-
dence is equivalent to certainty, and is an intrinsic property of
first-order decision signals themselves, encoding a graded belief
about some state of the world. For example, uncertain sensory
information (e.g., a low-coherence RDK) might elicit a broader
neural population tuning curve, which is decoded into a weaker
decision signal (Ma et al., 2006). This class of encoding scheme
has the virtue of translating principles of probabilistic computa-
tion directly to neural circuits, and thus ensuring that more
reliable signals wield greater influence over choices. It there-
fore provides an elegant mechanism for understanding how
humans andmonkeys optimally combine noisy sensory informa-
tion across modalities during multisensory perception (Ernst and
Banks, 2002; Ma and Jazayeri, 2014). In support of this view, in
the opt-out task, single-cell activity in LIP both during and after
stimulus viewing predicts a monkey’s later decision to decline

when available, with mean firing rates on opt-out trials falling
intermediate between (but not simply reflecting a mixture of)
those where a saccade is made to the target or distracter. In
other words, decision information and choice certainty are not
encoded separately, but rather in a common neural population
(Kiani and Shadlen, 2009).
This latter perspective raises the question of how confidence

is used to guide behavior, such as the decision to select an
‘‘opt-out’’ option. One long-standing difficulty with explaining
confidence judgments in terms of the decision variable proposed
by the DDM is that if decision bounds are fixed at a single value,
then terminal certainty (and reported confidence) should be
identical on every trial. One solution to this problem draws
upon a different sequential sampling model, in which cumulative
tallies of evidence for each option ‘‘race’’ toward a single
threshold. This allows confidence to be computed as the
‘‘balance of evidence’’ between the winning trace and its nearest
competitor at the time of the decision (Vickers, 1979). A different
solution to this problem invokes a notion discussed above,
namely that where sensory reliability is unknown, the time
elapsed in a trial is a good proxy for whether a decision will be
accurate or not (Figure 5D). Indeed, amodel that uses both signal
strength and time elapsed to compute the probability of a correct
response can account for monkey behavior and concomitant
neural data during the opt-out task (Kiani and Shadlen, 2009).
Interestingly, unlike the models that overlook elapsed time as a
predictor of confidence, this account correctly predicts that
when choice and confidence are signaled with a single, ballistic
movement (precluding post-decision information or ‘‘changes of
mind’’ from polluting certainty estimates), then confidence will
increase with signal strength on both correct and error trials.
This finding has been supported by recent data (Kiani et al.,
2014a). Thus, under this perspective confidence is a product of
both signal strength and elapsed time, and first- and second-or-
der decision signals share a common neural substrate in LIP,
obviating the need for a separate evaluative or ‘‘metacognitive’’
system encoding decision confidence. However, these issues
remain controversial, and it will fall to future research to unpick
the complex empirical and theoretical arguments surrounding
decision confidence (Insabato et al., 2016).

Summary and Perspective
In this review, we have discussed central questions in the study
of perceptual decision making concerning both the computation
of decision variables and their expression in neural circuits. The
first section describes insights derived from new approaches
using monkeys, rodents, and humans that have begun to
reshape the field. In section 1.1, we discussed new challenges
to the canonical view that neurons in area LIP of the macaque
monkey implement a gradual, build-to-threshold decision pro-
cess. In particular, we note that a new emphasis is being placed
on the heterogenous coding properties (mixed selectivity) of
neurons in this area, and questions have been raised about the
nature of the dynamics of integration. We also discuss the key
recent finding that inactivating LIP seems to have little or no
impact on perceptual decisions, calling into question its causal
role in this function. In section 1.2, we survey exciting new tech-
niques that have been developed to study perceptual decisions
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in association with a rodent model. New methods offer the pos-
sibility of targeting specific cell types for both recording and
perturbation. Although this field is new, it has already pointed
to hitherto overlooked dissociations among brain regions previ-
ously implicated in perceptual choice, including the parietal and
prefrontal cortices. Early work in this area has hinted that charac-
terizing the circuit mechanisms underlying perceptual decisions,
for example, by classifying neurons according to their cell type,
selectivity, or projection targets, may be a key to unravelling
the computational mechanisms of perceptual decision making
and pinpointing their neural implementation. In section 1.3, we
focus on new work that has studied perceptual decision making
in humans, using modeling in conjunction with whole-brain func-
tional neuroimaging techniques. This work has identified new
candidate brain signals that could reflect a build-to-threshold
decision process in humans, as well as extending the sequential
sampling framework to account for suboptimal biases that occur
in human decisions about both sensory stimuli and economic
prospects.
The second section expands the discussion to topics that we

believe offer great promise for future research linking model
systems. In section 2.1, we discuss the timing of perceptual
decisions, with a focus on both monkeys and humans. New
single-cell recordings have alerted researchers to the idea that
the timing of many decisions may be driven by a dynamically
growing, evidence-independent ‘‘urgency’’ signal not predicted
by standard computational models that draws decisions to a
close when information is weak or ambiguous. However, behav-
ioral and neural evidence for this signal remain preliminary. In
section 2.2, we review neural studies that have revisited the
long-standing question of how perceptual decisions are biased
by contextual signals encoding the probability or value of re-
sponses. Once again, we find some evidence that in addition
to an early additive component, a dynamically growing signal
may bias decisions toward a preferred bound, especially under
free-response conditions. Finally, in section 2.3, we discuss
intriguing new debates surrounding the computation of decision
confidence, and its neural implementation. We compare rival
views suggesting that confidence may be a ‘‘second-order’’ or
‘‘metacognitive’’ signal, and those proposing that decisions
and confidence rely on shared computations and neural circuits.
We discuss the view that elapsed decision time is a key quantity
determinant of decision confidence.
We would like to close by bringing together a number of com-

mon themes that have emerged from the diverse questions we
have considered, which suggest some promising avenues for
research over the coming years.
The elegant, statistically optimal framework provided by the

sequential sampling framework has been of great benefit to
the field, providing a strong computational basis for interpreting
neural data. However, we argue that the next stepwill be tomove
to understand perceptual decisions at a lower, more biologically
plausible level of description that refers to both cell types and
neural dynamics at the level of microcircuits. Both the computa-
tional framework and the recording tools are becoming available
to tackle this challenge, and we urge researchers to build
on important first steps to bring them together. We expect
that studies focused on unpicking the contribution of distinct

neuronal classes within the microcircuit will shed light on the
perplexing heterogeneity of neural responding observed during
perceptual decisions in both rodents and monkeys, and help
further characterize the dynamics that underlie sequential inte-
gration of decision information.
Relatedly, we argue that current understanding of how distinct

regions coordinate perceptual decision making across the
brain is very limited. This is in part because until now, most
research groups have focused exclusively on a limited number
of recording sites, such as LIP and FEF. The advent of high-
throughput recording opens new doors to multi-site recordings
that can explore the relative latencies of, and interactions be-
tween, multiple brain regions (Siegel et al., 2015). Moreover,
future research promises to reveal key contributions to percep-
tual decision making from currently under-explored brain
regions, such as the striatum, as well as clarifying the relative
contributions of structures such as the parietal and orbitofrontal
cortices. Characterizing the nature of the decision signals at
diverse cortical and subcortical sites also offers the opportunity
to link animal work more closely with human functional neuroi-
maging studies, which have emphasized the contribution of re-
gions such as the anterior cingulate cortex and insular cortex
that are relatively unexplored in studies of rodent and monkey
perceptual decisions. An important step toward realizing this
goal will be more work that explicitly compares neural responses
across species, in an attempt to identify functional as well as
structural homologies (Narayanan et al., 2013).
In parallel, we hope that new insights from recording and inter-

ference studies across species will also help resolve debates
over computational mechanisms of decision making. The DDM
has been a tremendously useful and reliable workhorse for un-
derstanding extant neural data, but a full mechanistic description
of perceptual decisions will need to elaborate this modeling
framework to incorporate additional terms and parameters.
One example that has been highlighted in the current review is
the notion that decisions are not merely driven by accumulation
of noisy sensory evidence, but by time-varying bias signals that
help curtail deliberation in the face of ambiguous information.
This ‘‘urgency’’ signal seems not only to help control the trade-
off between speed and accuracy, but may also contribute to
the biasing of decisions by probability, and even play a role in
the computation of decision confidence. We argue that charac-
terizing this signal at the neural level is an important future goal
for neurophysiologists. Other examples are emerging from hu-
man work, where subjects can more easily engage in more so-
phisticated tasks and are less overtrained, placing suboptimal
decision policies more clearly in view and offering the opportu-
nity to understand their computational substrates. New neural
data will undoubtedly help further constrain and guide our
modeling framework, and other computational details concern-
ing how information is transformed and integrated will no doubt
emerge over coming years. As ever, the pace of progress will be
accelerated if researchers keep an open mind about the classes
of model that may best describe perceptual decisions.
In summary, we think that the field is at an important juncture.

New techniques have shown that advanced optogenetic and
imaging methods are feasible in the rodent, and new para-
digms have opened doors to understanding the cognitive
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underpinnings of perceptual decisions in humans. The resultant
data have already inspired new theoretical insights concerning
the neural computations that support decision formation. The
next steps are to connect these insights across species,
furnishing general principles for perceptual decision making in
rodents, monkeys, and humans.

ACKNOWLEDGMENTS

T.D.H. and C.S. contributed equally to this manuscript.

REFERENCES

Balan, P.F., and Gottlieb, J. (2009). Functional significance of nonspatial infor-
mation in monkey lateral intraparietal area. J. Neurosci. 29, 8166–8176.

Barak, O., Sussillo, D., Romo, R., Tsodyks, M., and Abbott, L.F. (2013). From
fixed points to chaos: threemodels of delayed discrimination. Prog. Neurobiol.
103, 214–222.

Basten, U., Biele, G., Heekeren, H.R., and Fiebach, C.J. (2010). How the brain
integrates costs and benefits during decision making. Proc. Natl. Acad. Sci.
USA 107, 21767–21772.

Bastos, A.M., Usrey, W.M., Adams, R.A., Mangun, G.R., Fries, P., and Friston,
K.J. (2012). Canonical microcircuits for predictive coding. Neuron 76,
695–711.

Bell, A.H., Summerfield, C., Morin, E.L., Malecek, N.J., and Ungerleider, L.G.
(2016). Encoding of stimulus probability in macaque inferior temporal cortex.
Curr. Biol. 26, 2280–2290.

Bennur, S., and Gold, J.I. (2011). Distinct representations of a perceptual de-
cision and the associated oculomotor plan in the monkey lateral intraparietal
area. J. Neurosci. 31, 913–921.

Bernacchia, A., Seo, H., Lee, D., andWang, X.J. (2011). A reservoir of time con-
stants for memory traces in cortical neurons. Nat. Neurosci. 14, 366–372.

Bisley, J.W., Krishna, B.S., and Goldberg, M.E. (2004). A rapid and precise on-
response in posterior parietal cortex. J. Neurosci. 24, 1833–1838.

Boehm, U., Hawkins, G.E., Brown, S., van Rijn, H., and Wagenmakers, E.J.
(2016). Of monkeys and men: Impatience in perceptual decision-making. Psy-
chon. Bull. Rev. 23, 738–749.

Bogacz, R., Brown, E., Moehlis, J., Holmes, P., and Cohen, J.D. (2006). The
physics of optimal decision making: a formal analysis of models of perfor-
mance in two-alternative forced-choice tasks. Psychol. Rev. 113, 700–765.

Bogacz, R.,Wagenmakers, E.J., Forstmann, B.U., and Nieuwenhuis, S. (2010).
The neural basis of the speed-accuracy tradeoff. Trends Neurosci. 33, 10–16.

Bollimunta, A., and Ditterich, J. (2012). Local computation of decision-relevant
net sensory evidence in parietal cortex. Cereb. Cortex 22, 903–917.

Britten, K.H., Shadlen, M.N., Newsome, W.T., and Movshon, J.A. (1993). Re-
sponses of neurons in macaque MT to stochastic motion signals. Vis. Neuro-
sci. 10, 1157–1169.

Broadbent, D.E. (1958). Perception and Communication (Pergamon Press).

Brody, C.D., and Hanks, T.D. (2016). Neural underpinnings of the evidence
accumulator. Curr. Opin. Neurobiol. 37, 149–157.

Brunton, B.W., Botvinick, M.M., and Brody, C.D. (2013). Rats and humans can
optimally accumulate evidence for decision-making. Science 340, 95–98.

Busemeyer, J.R., and Townsend, J.T. (1993). Decision field theory: a dynamic-
cognitive approach to decision making in an uncertain environment. Psychol.
Rev. 100, 432–459.

Carandini, M., and Churchland, A.K. (2013). Probing perceptual decisions in
rodents. Nat. Neurosci. 16, 824–831.

Cassey, P., Heathcote, A., and Brown, S.D. (2014). Brain and behavior in de-
cision-making. PLoS Comput. Biol. 10, e1003700.

Cheadle, S., Wyart, V., Tsetsos, K., Myers, N., de Gardelle, V., Herce Casta-
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