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SUMMARY

To understand the neural mechanisms that support
decision making, it is critical to characterize the time-
scale of evidence evaluation. Recent work has shown
that subjects can adaptively adjust the timescale of
evidence evaluation across blocks of trials depending
on context [1]. However, it’s currently unknown if
adjustments to evidence evaluation occur online
during deliberations based on a single stream of evi-
dence. To examine this question, we employed a
change-detection task in which subjects report their
level of confidence in judging whether there has
been a change in a stochastic auditory stimulus.
Using a combination of psychophysical reverse cor-
relation analyses and single-trial behavioralmodeling,
we compared the time period over which sensory in-
formation has leverage on detection report choices
versus confidence. We demonstrate that the length
of this period differs on separate sets of trials based
on what’s being reported. Surprisingly, confidence
judgments on trials with no detection report are influ-
enced by evidence occurring earlier than the time
period of influence for detection reports. Our findings
call into question models of decision formation
involving static parameters that yield a singular time-
scale of evidence evaluation and instead suggest that
the brain represents and utilizes multiple timescales
of evidence evaluation during deliberation.

RESULTS AND DISCUSSION

The adaptive selection of behavior requires choosing appro-
priate actions based on available information. Inmany instances,
adaptive behaviors are guided by detecting subtle signals in
a dynamic environment. Previous studies have shown that hu-
mans, monkeys, and rodents are capable of quickly extracting
information about the variability of changes in dynamic environ-
ments [2–5]; moreover, subjects can alter their timescale of evi-
dence evaluation—that is, the time period over which evidence
has leverage over a decision—based on the expected duration
of signals in order to make judgments of when an actual signal
occurs [1]. After individuals make a decision, the past evidence

can be utilized for additional purposes, including the judgments
of the degree of confidence that the selected option is correct
[6–22]. To shed light on the flexibility of evidence evaluation,
we examined if and how different timescales of evidence are
utilized for change-detection reports while subjects performed
an auditory change-detection task compared to confidence
judgements in trials without detection reports.

Auditory Change-Detection Task
We trained subjects to perform an auditory change-detection task
in which they reported a change in the underlying rate in a
sequence of auditory clicks generated by a stochastic Poisson
process. Trialsbeganwhenasubjectplaced their finger intoacen-
tral port, which was followed by the onset of the auditory stimulus
(Figure 1). The underlying rate was initially 50 Hz, and for 70% of
trials, the rate increased at a random timeandby a variablemagni-
tude. The other 30%of trials endedwithout a change (catch trials).
Subjectswere required to remove their finger from the central port
within 800 ms of the change onset (hit) or withhold responding for
catch trials (correct rejection,CR).Therewere two typesoferrors in
this task: premature responses (false alarms, FA),which can occur
in catch and non-catch trials, and failures to respond in time
(misses). Inall cases, subjectswere thencued to reportconfidence
using the two side ports. Confidence was assessed via a post-
decision wager. Immediately following the confidence report,
feedback was given via an auditory tone to indicate success or
failure on that trial.

Task Performance and Confidence Ratings
All subjects were able to perform the task with high hit rates for
the easiest trials and diminishing hit rates for medium- and
high-difficulty trials (Figure 2A, left; see Figure S1 for individual
subject data), suggesting that they were attending to the stimuli.
During catch trials, subjects displayed CR rates of !85% with a
!15% FA rate across both trial types (Figure 2A, right). For
both hits and misses, confidence scaled with trial difficulty,
with the largest changes in click rates evoking the highest level
of confidence during hits and the lowest level of confidence dur-
ingmisses (Figure 2B, left). CR and FA trials by definition involved
no change in the underlying generative click rate and evoked in-
termediate levels of confidence compared to hits and misses
(Figure 2B, right).

Psychophysical Reverse Correlation
To examine the timescale of evidence evaluation, we first
conducted psychophysical reverse correlation (RC) analyses
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[15, 23–25]. RC traceswere constructed by convolving click times
with causal half-Gaussian filters (s = 0.05 s) and aligning the result
to the end of the stimulus presentation. This allowed us to recon-
struct the average stimulus that preceded a given trial outcome
and confidence rating.We focused our initial analyses on FA trials
and their associated confidence ratings. On these trials, re-
sponses were only affected by natural fluctuations in the stochas-
tic stimulus and not tied to a generative change in click rate as
occurs for hit trials. To examine overall influence on choice inde-
pendent of confidence, all FA RC traces were averaged together.
Across subjects, FA choices were characterized by an average
RC trace (hereafter referred to as the detection report kernel)
showing a transient increase in click rate, which followed a
time-course with a duration similar to the response window in
which subjects were allowed to report an actual change in the
generative click rate (Figure 3A; see Figure S2 for individual sub-
ject data). There was a sharp increase starting !800 ms before
the detection report that collapsed to baseline just before the
report, indicative of sensorimotor delays limiting the influence of
the time period just before the response. Comparing RCs from
high and low confidence FA trials (Figure 3B; see Figure S2 for in-
dividual subject data), we found that evidence for confidence
judgements was used during the period after which the detection
report kernel returned to baseline (Figure S3), consistent with pre-
vious work using a different task design that showed that confi-
dence is based on continued accumulation of evidence after
the decision but before the confidence response [26].

We next asked whether there is an influence of evidence on
confidence that extends earlier in time than its influence on
detection reports, as this would be indicative of evidence being
evaluated at multiple timescales. Surprisingly, we found that the
point in time at which RC kernels deviated from baseline differs
depending on what is reported. In particular, kernels began to
deviate from baseline for CR confidence reports earlier in time
than for detection reports. To quantify this for detection reports,
we fit the ascending phase of the detection report kernel with a
2-piece linear function (see STAR Methods). Across subjects,
the parameter estimate of the detection report kernel start point
was !0.74 s (95% CI; 0.73 to 0.75 s) preceding the detection
report (Figure 3A, arrow).

In contrast, the period of influence of evidence for CR confi-
dence reports extended considerably earlier in time. High-
confidence CRs were characterized by a lower average click
rate preceding the end of the stimulus compared with low-
confidence CRs (Figure 3C; see Figure S2 for individual subject
data). This difference gradually increased until the end of the trial.
To estimate the point in time at which the difference between
high- and low-confidence CR reverse correlation deviated from
baseline, we fit the difference (the ‘‘CR confidence difference
kernel’’) with a 2-piece linear function (see STAR Methods).
Across subjects, the pooled parameter estimate for when the
CR confidence difference kernel diverged (i.e., differed from
0 Hz) was !1.76 s before the end of the trial (95% CI; 1.68 to
1.84 s), more than twice as early as the estimate of the start
of the detection report kernels. This suggests that during the
course of a trial, subjects have flexibility in the timescale of evi-
dence evaluation, with different timescales more strongly linked
to different types of reports.

Model-Based Analysis
While psychophysical RC analyses provide useful information for
comparing the timescales of evidence evaluation, they are not a
veridical representation of how evidence is temporally evaluated,
because they reflect the influence of a number of different com-
ponents of evidence processing [27]. Therefore, we adopted a
model-based approach to ask whether a single timescale of
evidence evaluation can explain the differing start points re-
vealed by the RC analyses. In the model, evidence in the form
of the auditory clicks was convolved with a half-Gaussian filter
with its width (s) as a free parameter (Figure 4A). The filter width
determined the timescale of evidence evaluation, with a wider fil-
ter corresponding to a longer timescale. The output of the filter
governed the average dynamics of a decision variable. Variability
was included in the process by adding Gaussian noise to the
decision variable at each timestep with the standard deviation
of the Gaussian as a second free parameter in the model. A third
free parameter set a decision bound that caused triggering of a
detection report when the decision variable reached that value.
To account for sensorimotor delays inherent to decision pro-
cesses, an additional period of ‘‘non-decision time’’ described

Figure 1. Auditory Change-Detection Task
with Confidence Report Showing the
Sequence of Events for Each Trial
A trial began when the center port was illuminated,

cuing subjects to insert their finger. Once the finger

was inserted, a stream of auditory clicks began

to play. The clicks were generated by a Poisson

process with a generative baseline click rate of

50 Hz. 30% of trials were catch trials with no

change in the generative click rate. In the other

70% of trials, the generative click rate increased by

10, 30, or 50 Hz at a random point (red arrow in

example). Subjects had to withdraw their finger

within 800ms of the change for the trial to qualify as

a hit on change trials or withhold a response for the

trial to qualify as a CR on catch trials. At the end of

the trial (after response or stimulus end), the two

peripheral ports illuminated, cuing subjects to

indicate confidence in their decision: engaging the left port reported low confidence, while engaging the right reported high confidence. Immediately following

the confidence report, feedback was given via an auditory tone to indicate success or failure on that trial.
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by a Gaussian distribution with mean set by a fourth free param-
eter was added to the bound-crossing time to determine the final
response time.
We first used this model to capture the choice behavior ex-

hibited by our subjects. In particular, we found the values for
the four free parameters of themodel that best fit the trial-by-trial
choice responses made by our subjects (see STAR Methods).
This yielded psychometric functions that closely approximated
the behavioral data (Figure 4B). We then used model simulations
with the best fit parameters to extract predictions for the detec-
tion report kernels and CR confidence difference kernels. These
trials were classified as high or low confidence based onwhether
the final decision variable was higher or lower than a threshold
set to 49 Hz. Comparing the predicted kernels to the actual
data, we found that this single-timescale model predicted a start
of the detection report kernel that was slightly earlier than the
data (29.3 ± 6.4ms earlier). Critically, this model predicted a start
of the divergence of the CR confidence difference kernels that
was substantially later than the experimental data (894.8 ±
12.6 ms later) (Figure 4C). We found similar results with a variety
of filter shapes and non-decision time distributions (data not
shown). We also tested whether trial-to-trial variability in deci-
sion bound could extend the divergence of CR confidence
difference kernels closer to the experimental data, but we found
no set of parameters capable of doing so (Figure S4). Finally, we
extended the timescale of evidence evaluation in the model with
a longer filter width to recapitulate the experimental divergence
of the CR confidence difference kernels. In doing so, we found
that the model predicted a start of the detection report kernel
that was substantially earlier than the data (1,082.6 ± 40.1 ms
earlier). These analyses confirm our intuition that a neural mech-
anism with a single timescale of evidence evaluation cannot
explain the result that the divergence of CR confidence differ-
ence kernels can extend more than twice as early relative to trial
end than detection report kernels.
Conclusions
Our study demonstrates that, in perceptual decisions, the time-
scale of evaluation of past evidence can be flexibly adjusted for
use in detection and separately for confidence judgments when
no detection is reported. This was revealed using a change-
detection task in which perfect integration of evidence is
suboptimal. With perfect integration, evidence accumulated early
retains its influence on the decision for the full duration of the
deliberation period, which is the optimal strategy during percep-
tual discrimination tasks based on the full stimulus. In contrast,

evidence has a more transient influence in our change-detection
task [24]. By including an additional confidence report, this para-
digm allowed us to test whether the limited temporal influence
of evidence on decision formation was similar for confidence
judgments. We found that kernels for judgments of confidence
could be influenced by evidence fluctuations earlier in time on
trials without a detection report. Interestingly, information within
different temporal epochs appears to be used for confidence
judgments in a way that depends on how the trial ended. When
the subject terminated the evidence stream by reporting a detec-
tion, as in the case of FAs, the confidence-influencing epoch
began at approximately the same time as the detection report
kernel. However, when the trial ended due towithholding a detec-
tion report, as in the case of CRs, the confidence-influencing
epoch extended several hundred milliseconds earlier than the
detection report kernel. While averaging overmany trials prevents
us from quantifying which epochs of time had influence on a
trial-to-trial basis, the magnitude of the mean psychophysical
kernel nonetheless relates to the magnitude and frequency of
evidence evaluation during a given epoch across trials.
Model-based analyses confirmed that our results cannot be

explained by a neural mechanism involving a single, fixed time-
scale of evidence evaluation. The differences in the evidence
evaluation period that we found between conditions, which
reveal flexibility in the process, provide insights for the require-
ments of any specific mechanism responsible for this discrep-
ancy. In particular, our results suggest that the mechanism,
whatever it may be, has the capacity to either adjust the
timescale of evidence weighting during individual deliberative
decisions or access multiple distinct timescales for different
purposes. We discuss possible representational architectures
of the brain that would enable this below.
It is unclear why subjects adjusted their timescales of evi-

dence evaluation depending on how the trial terminated. It is
optimal to utilize evidence over the last 800 ms for detection
and associated confidence because if there was a change, it
could have only happened in this period in this task. Thus, it is
suboptimal for subjects to base their confidence on earlier evi-
dence, as was observed in CR trials. However, we suggest it
may be optimal in the more general class of change-detection
decisions individuals encounter in real life. Typically, confidence
in a choice based on a perceived change should be judged
based on recent evidence that evoked the perceived change.
In contrast, confidence that no change has occurred in a real-
world situation often involves judgment based on a longer

Figure 2. Task Performance and Confidence
Ratings
(A) Combined data from 7 subjects showing perfor-

mance as a function of the change in click rate (left) and

proportion of FA and CR trials (right). Hit rate was

calculated excluding FA trials. The FA rate was calcu-

lated from all trial types. The CR rate was calculated

from trials in which no change in generative click rate

occurred (30% of trials).

(B) Proportion of high-confidence hits (black) and

misses (gray) as a function of change in click rate (left)

and proportion of high-confidence FAs and CRs (right).

Error bars indicate ±SEM.

See also Figure S1.
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interval of time duringwhich a changewould have been possible.
Our results are consistent with a strategy that would be appro-
priate for that more general type of situation.

Our results show that past evidence must be represented in a
way that allows flexibility in the timescale of evidence evaluation.
This extends the idea that adapting the timescale of evidence
evaluation is necessary to optimize decision processes in chang-
ing environments [1, 2, 4, 28]. In those studies, the dynamics of
the environment dictate the optimal timescale, but only one time-
scale needs to be accessible for any given context or trial. In
contrast, we find that multiple timescales of evidence are used
within the same context. Thus, mechanisms are necessary to
adjust the timescale of evaluation, even as the evidence is being
presented and used. Mid-deliberation adjustments of decision
processes have been described extensively, with regard to deci-
sion bounds. Collapsing decision bounds can furnish urgency
onto the decision process [29–31], and changes of mind about
decisions and confidence are best explained with altered
post-commitment decision bounds [26]. In most of those cases,
decisions were made in situations that involved near-perfect
integration of sensory evidence, so there was no opportunity to
look for changes in the timescale of evidence evaluation at earlier
periods of deliberation. Here, we show this timescale to be an
important factor that can be adjusted online during deliberations
based on a single stream of evidence.

Previous studies with yes-no detection tasks have suggested
separate neural representations for stimulus-present and stim-
ulus-absent choices [32, 33]. While those tasks involved a delay
between the stimulus epoch and the choice report (unlike our
task), the separate neural representations they found could pro-
vide a substrate for distinct timescales of evidence evaluation.
Thus, one possible neural architecture that could explain our
results is having one population of neurons evaluating evidence
over a shorter timescale for the detection decision and another

population of neurons evaluating evidence in parallel over a
longer timescale for confidence judgments on trials without a
detection report. We suggest that neural mechanisms that allow
flexibility in the timescale of evidence evaluation may be used in
the service ofmultiple components of decision-making behavior,
rather than flexibility being a unique feature of decisions that are
combined with confidence judgments.
It is tempting to speculate that recurrent networkmodels of inte-

gration that require a fine level of tuning to avoid leaky dynamics
[34], which is usually viewed as a shortcoming [35], may instead
bea virtuebyproviding flexibility in the timescale of evidenceeval-
uation. Under this idea, changes in the timescales of evidence
evaluation could be introduced through small adjustments of tun-
ing that would result in altered leakiness of integration. Alterna-
tively, flexibility in the timescale of evidence evaluation could be
implemented at an earlier stage of sensory processing, such as
through gating of deliberation by stimulus salience [36, 37]. In
this alternative schema, sensory responses must exceed a
salience threshold to be considered for the decision process,
and alterations of the salience threshold would influence the evi-
dence evaluation process. Neither of these mechanisms alone
allows use of multiple timescales of evidence evaluation for the
same stream of evidence. Memory traces that allow recall and
re-processing of past evidence would be one mechanism to use
multiple timescales of evidence evaluation for the same stream
of evidence. Another related mechanism that would allow parallel
access tomultiple timescales for the same streamof evidence de-
rives from theoretical work showing that memory traces may be
encoded through neurons with heterogeneous dynamics that
form a temporal basis set for previous events [38]. Selective
readout of sets of neurons with differing timescales would allow
flexible access that dependson taskdemands [39, 40]. Thiswould
be readily achievable in networks that encode accumulated evi-
dence with a diversity of timescales [41]. This mechanism could

Figure 3. FA and CR Reverse Correlations
Combined data from 7 subjects were used to calculate average click rate over time for each outcome. RC traces were constructed by convolving click times

preceding outcomes with causal half-Gaussian filters (s = 0.05 s).

(A) Detection report kernel. RC trace (black line) is comprised of all FA trials, showing the average click rate preceding FAs. The start of the detection report kernel

(arrow) was estimated by fitting the ascending phase of the kernel with a 2-piece linear function with 3 free parameters: the baseline click rate (left of arrow), the

slope of the kernel’s ascending phase (right of arrow), and the start of the ascending phase (arrow). The horizontal dotted line denotes the 50 Hz baseline

generative click rate.

(B) Detection report confidence kernels. RC traces show the average click rate preceding high (red) and low (blue) confidence FAs, aswell as the difference in click

rate between the two confidence kernels (high–low; green). Same conventions as in (A). The shaded portion of the graph near time 0 shows the temporal interval

analyzed in Figure S3A.

(C) CR confidence kernels. As in (B), but showing RC traces preceding CRs. The divergence point between the two confidence kernels (arrow) was estimated by

fitting the difference between the two kernels (high–low; CR confidence difference kernel) with a 2-piece linear function with 2 free parameters (see Figure S2,

column 4 for fits): the divergence point from a baseline difference of 0 Hz (arrow) and the slope from that point onward. For all kernels, shaded region shows ±SEM.

N = number of trials for each trace. See Figures S2 and S3.
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also allow adjustments of the timescale of evidence evaluation
even after the evidence has been presented, which would enable
meta-cognitive operations [11, 42, 43]. We therefore suggest that

our paradigm provides a powerful approach to understand the
neuralmechanismsand representational architectures in thebrain
that could supportmeta-cognitive operations for decisionmaking.

Figure 4. Model Simulation of Behavioral Data
(A) Model schematic. The model included four free parameters: width of half-Gaussian filter (0.96 s), decision variable noise term standard deviation (13 Hz),

decision bound (103 Hz), and mean Gaussian NDT (0.17 s). Best fit parameters are in parentheses.

(B) Model comparison with psychometric data based on best fit parameters. Error bars indicate ± SEM (as in Figure 2). The red line indicates model hit rate as a

function of change in click rate, with additional interpolated delta click rates. Red stars indicate FA and CR rates for the model.

(C) Experimental and simulated RCs.

See also Figure S4.
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STAR+METHODS

KEY RESOURCES TABLE

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Timothy
Hanks (thanks@ucdavis.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

There were 7 subjects (2 female, 5 male) included in this study, all aged 18-34 and members of UC Davis. For the 7 subjects included
for analysis, 3 subjects (S1, S2, S3) were knowledgeable about the task design and research motivations prior to data collection,
while the remaining subjects were naive. Study procedures were approved by the UC Davis Institutional Review Board, and all sub-
jects provided informed consent. Subjects were compensated with a $10 Amazon gift card for each 1-hour experimental session
completed, for a total of 6-11 sessions. Each subject received full payment, irrespective of task performance.

METHOD DETAILS

Apparatus
Control of the task was programmed in MATLAB (Mathworks, RRID: SCR_001622) and facilitated by Bpod (Sanworks, RRID:
SCR_015943), which measures output of behavioral tasks in real time. Task stimuli were generated by the open source device Pulse
Pal [44]. The stimulus-response apparatus consisted of 3 cone-shaped ports, each containing an infrared LED beam that can detect
the insertion of a finger when the beam is obstructed. Each port can also be illuminated by an LED light, which signals to the subject
that the port can be used during that stage of the trial. Sounds were played through headphones worn by the subject.

Change-detection task
Subjects began each trial by inserting their index finger into the illuminated center port of the apparatus, which initiated a train of
auditory clicks randomly generated by a Poisson process. The initial baseline frequency of this click train was 50 Hz, and the stimulus
persisted at this frequency for a variable time period, during which the subject was to keep their finger in the port. In 70% of trials, the
frequency of the stimulus increased with a magnitude of 10, 30, or 50 Hz at a random time sampled from a truncated exponential
distribution (minimum 0.5 s, maximum 10 s, mean 4 s). This sampling produced an approximately flat hazard rate, such that the
instantaneous probability of a change at the given moment did not increase or decrease as the trial progressed. When a change
occurred, the subject was to respond by removing their finger from the port within 0.8 s of the change. The stimulus ended imme-
diately upon finger removal. In the remaining 30% of trials (‘‘catch’’ trials), no frequency increase occurred; in these trials, the subject
was to maintain finger insertion for the full duration of the stimulus, which ended at a random time from 0.5 to 10.8 s. The same expo-
nential distribution was used as for the change times in the non-catch trials plus the 0.8 s response window in order to match the
distribution of catch trial durations to that of non-catch trials. Thus, the timing of trial termination provided no information about catch
versus non-catch trial.

Finger removal occurring within the 0.8 s following a change was recorded as a ‘‘hit.’’ Failure to correctly respond in time to a
change was recorded as a ‘‘miss.’’ Correctly responding to catch trials required the subject to maintain finger insertion until
the stimulus ended, which was recorded as a ‘‘correct rejection’’ (CR). Whereas, if a subject removed their finger from the port
while there was no change in the generative rate of clicks, either on a catch or non-catch trial, the response was recorded as a ‘‘false
alarm’’ (FA).

After the auditory stimulus concluded, the peripheral ports of the apparatus illuminated, cuing the subject to report confidence in
the decision. Subjects were given a choice between ‘‘low’’ or ‘‘high’’ confidence, which was reported by inserting a finger into either
the left or right peripheral port, respectively. Subjects were instructed to report low confidence if the subject was ‘‘probably not

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB Mathworks SCR_001622

Psychophysics Toolbox for MATLAB http://psychtoolbox.org/ SCR_002881

Custom MATLAB code (for generating experiment stimuli, data analysis, modeling) Tim Hanks, thanks@ucdavis.edu N/A

Other

Bpod Sanworks SCR_015943

Pulse Pal Sanworks N/A
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successful’’ and high confidence if the subject was ‘‘probably successful’’ in the trial. Performance was tracked by a points system:
Reporting high confidence on a correct decision awarded the subject with 2 points, while low confidence on a correct decision
yielded only 1 point. Reporting high confidence on an incorrect decision cost the subject 3 points, while reporting low confidence
on these trials cost the subject only 1 point. A running total of accumulated points in the experimental block was displayed on a
monitor in front of the subject as a blue bar that changed size with the points total, which could not fall below 0 points. This points
scheme encouraged subjects to report high confidence for trials in which the evidence especially favored their choices, because they
were asymmetrically punished for erroneous high confidence reports. Subjects then received auditory feedback on their initial de-
cisions, regardless of confidence report, indicating whether the response was correct. The center port then illuminated once again,
allowing the subject to start a new trial.
If the subject removed their finger in response to a perceived change, a brief noise was played through the headphones to indicate

the response preceded the end of the stimulus. This ‘‘haptic feedback’’ sound allowed subjects to determine whether they reacted to
perceived changes in time so that they were registered as detection reports. Thus, subjects knew that trials with haptic feedback
were either hits or FAs, because a detection report was registered, while trials without haptic feedback were either misses or
CRs, because a detection report was not registered. This feedback allowed subjects to report confidence with full knowledge of
the decision that had been registered. The feedback did not indicate the correctness of the decision.

Supplemental instruction and post-training criteria
Before subject data was used for analysis, subjects completed training sessions until reaching performance criteria. Subjects
advanced past this training stage after completing a session in which they attained hits in 45% of non-catch trials, avoided FAs
on at least 75% of all trials, and had fewer than 1 mean ‘‘haptic errors’’ (high confidence misses with confidence reports occurring
within 0.5 s of stimulus end) per block. We established this criterion for identifying haptic errors because if subjects reported confi-
dence this quickly, they would likely have failed to incorporate the haptic feedback sound, or lack thereof. Their high confidence
reports would thus be informed only by recognition of the change and not success in responding to it. Any haptic errors that occurred
during data collection were not excluded from our analyses, though post-training haptic errors were rare. During training, we occa-
sionally provided subjects with supplemental instruction to allow them to better understand the haptic feedback if they accumulated
excess haptic errors. Additionally, to better furnish analyses that required a large sample size of both confidence reports, we sug-
gested to subjects who had low rates of high confidence judgments during training that they choose the ‘‘high confidence’’ option
more often when certain of their decisions so that they may earn more points; subjects still established their own criteria for which
trials to assign high confidence, given those supplemental instructions.

Model-based analyses
To further test whether our experimental results could be explained with a mechanism involving a single timescale of evidence eval-
uation, we used a model-based approach. With maximum likelihood estimation methods, we fit the behavioral choice data with a
model that had four free parameters (Figure 4A). The first stage of the model was to convolve the auditory clicks (sensory evidence)
with a filter having a half-Gaussian functional form with a free parameter for its standard deviation and the filter defined out to 3 stan-
dard deviations. We note that we also used other functional forms including exponential filters, square wave filters, and trapezoid
filters with similar conclusions (data not shown). In all cases, the result of the convolution stage delineated the evolution of a decision
variable over time. At the second stage of the model, noise was added to the decision variable at each time step with the noise taken
from a Gaussian distribution with a free parameter for its standard deviation. Thus, for any given stream of clicks, there was a
distribution of possible decision variable values at each point in time. The model prescribes detection reports for any part of this dis-
tribution that reaches or exceeds a threshold level set by a decision bound, the third free parameter of the model. To account for
attrition due to detection reports, the remaining probability distribution of the decision variable decreased by the probability of bound
crossing at each time step. Finally, to account for non-decision sensory and motor processing that adds delays, an additional non-
decision time (NDT) was added to the bound crossing time to yield the full reaction time. The non-decision time was taken from a
Gaussian distribution with a free parameter for its mean and its standard deviation constrained to be one-fifth of the mean. It has
been shown in other tasks that the shape of the non-decision time distribution can be quite variable across tasks/subjects and is
not necessarily Gaussian [45]. Our model-based analysis results were robust to departures from the Gaussian non-decision time
distribution that altered its skew (data not shown).
For any given set of parameters and sensory input, the model yields a probability distribution for the reaction times. Using this dis-

tribution of reaction times and the trial specifications, we calculated the probability of each trial outcome (hit, miss, FA, CR) for every
trial performed by our subjects based on the stimulus that was presented. We used brute force grid search to find the values of the
four free parameters that maximized the likelihood of the actual trial outcomes for every trial from the combined experimental data of
all subjects. Thus, the exact timing of the auditory clicks for every trial was used for the parameter estimations.
To show the best fit behavior from the model, we applied the model with best fit parameters to both experimental stimuli and new

stimuli generated in a fashion similar to the experimental stimuli to interpolate at intermediate stimulus strengths (Figure 4B). In partic-
ular, additional interpolated stimulus strengths were included at +15 Hz, +20 Hz, +25 Hz, +35 Hz, +40 Hz, +45 Hz to create a smooth
psychometric curve. 8000 trials were generated for each of these new stimulus strengths, roughly the same number of trials of each
experimental delta click rate. These interpolated values had no bearing on the fitting procedure itself. Psychometric behavioral rates
for the model were computed by taking the mean likelihood for a given trial type: for CR trials, the sum of CR likelihoods for all catch
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trials divided by the number of all catch trials; for FA trials, the sum of FA likelihoods for all trials divided by the number of all trials; for
hits and misses, the sum of each trial type’s likelihoods normalized by the number of non-FA trials (i.e., hits and misses) and divided
by the number of non-catch trials.

Next, we used model simulations to generate predicted RCs (Figure 4C). This was done by simulating 17,383 trials (matching the
total number of experimental trials) with the same stimulus parameters as used for the experiments and with 30% catch trial prob-
ability, also matched to the experiments. In these simulations, the model was applied to the trials as before, but with the trial type
being classified depending on if and when the model predicted a response. Similar to the model fitting described above, the stimulus
was convolved with the filter whose shape was defined by the fitted parameters to compute the mean decision variable. Instanta-
neous noise in the decision variable was drawn at each time interval from a Gaussian distribution with standard deviation specified
by the fitted parameters, with NDT also drawn from a distribution with the fitted parameters in the event of bound crossing. FA RCs
were generated similarly as the experimental RCs. FA trials were aligned to the time of response, and stimuli were convolved with a
causal half-Gaussian filter. In the case of CR confidence RCs, trials were classified as high or low confidence by thresholding the final
decision variable at 49 Hz, with high confidence CRs having a final decision variable lower than 49 Hz. Kernel start points were calcu-
lated as they were in analysis of the experimental data. In summary, the simulations used parameters fit to the behavioral choice
data to make predictions for the RC analyses. In addition to generating predicted RCs with model fit parameters, we performed sim-
ulations using a wider half-Gaussian filter (s = 0.8 s) such that the predicted CR confidence difference kernell approximated the
experimental start of CR confidence difference kernel (1760.1 ± 73.6 ms versus 1773.9 ± 43.5 ms). For this analysis, we decreased
the bound from 103 Hz to 95.2 Hz in order to maintain FA rates at experimental levels.

We also sought to test the possibility of whether a result similar to the experimental RCs could be recovered by adjustments to the
model that still involved a single timescale of evidence evaluation (Figure S4). This model recovery approach involved manipulating
the trial-to-trial variability in bound height from 0-144 Hz2 and adjusting the bound for each bound variability value to yield the same
FA rate as observed experimentally (12.6%). Simulations with each of the 25 model variants produced their own RC kernel start
points for FA choice reports and CR confidence reports, and the values of these kernel start points were compared to the experi-
mental kernel start points to determine whether the experimental start points could be recapitulated.

QUANTIFICATION AND STATISTICAL ANALYSIS

Exclusion Criteria
Beyond the 7 subjects analyzed in this study, we excluded 2 subjects from post-training data collection for the inability to adequately
detect changes in task stimuli at our criterion rate of 45% in any trial session and 2 subjects for failing to report high confidence for at
least 10% of CRs of all trials, making the session data unviable for analysis.

Data analysis
Individual trials were classified as hits, misses, CRs, and FAs. Hit rates were calculated as proportion of hit trials out of trials in which a
change occurred (non-catch, non-FA trials). FA rates were calculated as proportion of FA trials out of all trials, and CR rates were
calculated as proportion of CR trials out of all catch trials (Figure 2A). Because there were two confidence ratings available (high
and low), average confidence for each response type and stimulus condition (D click rate) was calculated as proportion of high con-
fidence reports for each response/stimulus combination (Figure 2B). Rates were calculated for both the combined data, which
included every trial from each individual (Figure 2), and for each individual subject (Figure S1).

FA and CRRCs (Figure 3) were generated by smoothing click timeswith a causal half-Gaussian filter having a standard deviation of
0.05 s and sampling every 0.01 s. Note that trials differed in duration. Rather than discard trials with shorter durations, each time bin
represents a mean over a different number of trials with shorter duration trials not contributing to earlier time points. For the confi-
dence-based kernels (Figures 3B and 3C), data were first separated into sets of low and high confidence trials, and these individual
datasets were each convolved with the half-Gaussian filter. The detection report kernel (Figure 3A) was created by convolving the
click times of all FA trials, regardless of confidence. We calculated difference plots for FA RCs (Figure 3B, green line) by subtracting
themean low confidence kernel from themean high confidence kernel at each time point. RCs included all trials of the associated trial
type (e.g., FA RCs included every FA trial recorded).

The start point and slope of the detection report kernel’s ascending phase were then quantified (Figure S2). For each subject’s FA
kernels, as well as FA kernels for the combined data, we fit the early phase of the FA kernel, from 3 s before stimulus end to the peak
value of the kernel, with a 2-piece linear function with three free parameters using MATLAB’s fit function. These parameters provided
estimates for the average baseline click rate leading up to the FA, the average start time of the kernel, and the slope of the function
from the start time to the peak of the kernel. The start time was the time point at which the function first diverged from the baseline.

Start point and slope of CR confidence difference kernels were estimated similarly (Figure S2), by fitting the last 5 s of the CR
confidence difference kernel to a 2-piece linear function with two free parameters for start point and slope. The start point was
the first time point that diverged from a 0 Hz differential click rate, and the slope was the slope of the line connecting this start point
to the stimulus end.

To estimate kernel endpoint for FAs (Figure S3), we convolved the click times with a square-wave function encompassing the
descending phase of the FA kernel. This allowed for a more precise estimate of the detection kernel endpoint that minimized the
influence of clicks on later times in the kernel compared to using a causal half-Gaussian filter. Starting from 75% of the peak FA
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choice kernel, a 5ms binwasmoved by 1ms toward the end of the stimulus, providing a 5mswide average click rate for eachms time
point. This kernel was then fit to a 2-piece linear function as before, this time with two free parameters: slope and kernel endpoint.
Because the subject’s choice of whether to respond would no longer be influenced by the stimulus after the kernel endpoint, the
mean click rate should return to the generative click rate of 50 Hz. Therefore, the rate after the endpoint was set to a fixed constant
of 50 Hz. The average excess click rate for high and low confidence trials was calculated by subtracting the mean click rate for high
and low confidence trials, respectively, from 50 Hz.

DATA AND SOFTWARE AVAILABILITY

The data that support the findings of this study and the analysis code are available from the Lead Contact upon request.
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