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Change point detection 
with multiple alternatives reveals 
parallel evaluation of the same 
stream of evidence along distinct 
timescales
Alexa Booras1,4, Tanner Stevenson1,4, Connor N. McCormack1, Marie E. Rhoads1,2 & 
Timothy D. Hanks1,3*

In order to behave appropriately in a rapidly changing world, individuals must be able to detect 
when changes occur in that environment. However, at any given moment, there are a multitude of 
potential changes of behavioral significance that could occur. Here we investigate how knowledge 
about the space of possible changes affects human change point detection. We used a stochastic 
auditory change point detection task that allowed model-free and model-based characterization 
of the decision process people employ. We found that subjects can simultaneously apply distinct 
timescales of evidence evaluation to the same stream of evidence when there are multiple types of 
changes possible. Informative cues that specified the nature of the change led to improved accuracy 
for change point detection through mechanisms involving both the timescales of evidence evaluation 
and adjustments of decision bounds. These results establish three important capacities of information 
processing for decision making that any proposed neural mechanism of evidence evaluation must be 
able to support: the ability to simultaneously employ multiple timescales of evidence evaluation, the 
ability to rapidly adjust those timescales, and the ability to modify the amount of information required 
to make a decision in the context of flexible timescales.

Decision making often involves evaluation of information from the environment to form a response. In order 
to behave appropriately in a rapidly changing world, individuals must be able to detect when changes occur in 
that environment. This process is referred to as change point  detection1. In real world situations, there are many 
possible aspects of the environment that could change, but there are often constraints on what changes are pos-
sible. For instance, when tracking a fly in the air, the fly could change direction along three dimensions, but when 
tracking an ant on the ground, the ant could change direction along only two dimensions. We sought to address 
how knowledge about the space of possible changes affects human change point detection.

Sequential sampling models that have been applied to a wide range of decision making tasks provide a frame-
work to describe the process of change point detection. In these models, an observer makes a choice based on a 
decision variable that combines information from different samples of evidence gathered over time, a process we 
refer to as evidence evaluation. Evidence evaluation can take a variety of forms, and the optimal form depends on 
task demands and environmental conditions. For example, in a stable environment, all samples of evidence can 
be treated equally, and evidence can be perfectly integrated over a long timescale to maximize  performance2–7. 
In contrast, in an unstable environment, samples from the past are less likely to reflect the current state of the 
world, and evidence should be evaluated over a briefer timescale to avoid integrating information that is no 
longer  relevant8–10. Change point detection is a specific example that involves an unstable environment and 
shorter timescales of evidence  evaluation10–12.

Knowledge about the space and type of possible changes may affect evidence evaluation for change point 
detection. Different types of changes may have distinct statistical properties that demand different optimal 
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timescales of evidence evaluation. For example, detecting the approach of a speedy predator benefits from a 
shorter timescale of evidence evaluation than detecting the approach of a slow and stealthy predator. Thus, 
information about the nature of the change—for example being in a location with only speedy predators or only 
slow, stealthy predators—has the potential to improve change detection performance through optimization of 
the timescale of evidence evaluation.

Knowledge about the space and type of possible changes may also improve change detection performance 
through mechanisms typically associated with selective  attention13–15. In the sequential sampling framework, 
each sample of evidence that is evaluated carries a signal about the environment that is potentially corrupted by 
signal-independent variability known as  noise2,3. That noise may involve environmental factors, but it may also 
be related to neural  processing16–19. To the extent the brain accounts for this noise, knowledge about the possible 
changes may affect the signal to noise ratio of the evidence evaluated for change point detection. Numerous 
studies using a variety of tasks have described improvements in performance with attention that are attribut-
able to increases in the signal to noise ratio that enhance perceptual sensitivity of attended  stimuli20–22. Thus, 
knowledge about the space of possible changes may alter evidence evaluation by changing perceptual sensitivity 
for change point detection.

A third possibility is that knowledge about the space and type of possible changes may alter decision commit-
ment policies. In the sequential sampling framework, a bound on the decision variable determines the timing 
of decision  commitment23–26. For change point detection, a lower decision bound results in fewer misses at the 
expense of more false alarms, and a higher decision bound results in fewer false alarms at the expense of more 
 misses11. Thus, the decision bound determines the tradeoff between false alarms and misses. There are many 
important considerations for setting the decision bound for change point detection. Among those is the number 
of potential changes that are simultaneously being monitored in any given situation. If each potential change car-
ries a fixed probability of false detection, then the greater the number of potential changes simultaneously under 
consideration, the greater the probability of a false alarm detection of one of those potential changes. Therefore, 
higher decision bounds may be required in situations with a greater number of potential changes that need to be 
considered. Following this logic, if fewer potential changes are under consideration, false alarm rates can be kept 
in check even with relatively lower decision bounds with the benefit of also reducing the miss rate. Thus, knowl-
edge about the space of possible changes may affect the setting of decision bounds for change point detection.

Previous research suggests that both perceptual and decision components of processing can be influenced by 
cues about possible changes in the  environment27. As a particularly relevant example for our study, Sridharan 
and colleagues showed dissociations of the effects of spatial cueing between sensory and decision components 
of processing for “yes/no” change detection in the visual domain, where people have to report if a change has 
occurred between two comparison stimuli. In particular, they found that sensory effects of cuing were spatially 
localized while decision effects were  not28. In order to distinguish these possibilities, they used a multidimen-
sional signal detection model that relies on a comparison of two samples of  evidence29, as is appropriate for the 
“yes/no” detection task they studied. However, it is not known how cues about the space and type of possible 
changes influence change point detection, which involves evaluation of multiple sequential samples of evidence 
rather than a comparison of two.

Here, we sought to address how knowledge about the space of possible changes affects evidence evaluation 
and decision bounds for an auditory change detection task we have developed. In this task, subjects must rapidly 
report when a change occurs in an auditory stimulus that is unpredictable in time. The change in the stimulus 
could be of two different varieties, and we provided cues that either informed the subject about the type of change 
that would occur or were uninformative about the type of change. We compared performance when the cue was 
informative versus uninformative using model-free psychophysical reverse correlation analyses combined with 
sequential sampling models to characterize behavior. We found that subjects can simultaneously apply distinct 
timescales of evidence evaluation to the same stream of evidence. Furthermore, accuracy for detection improved 
with informative cues through mechanisms involving these timescales of evidence evaluation and adjustments 
of decision bounds. These results establish important capacities of information processing for decision making 
that any proposed neural mechanism of evidence evaluation must be able to support.

Methods
Subjects. We recruited 15 subjects to perform this experiment. Six subjects elected to discontinue the exper-
iment, and we analyzed the data of the remaining nine subjects. All subjects were undergraduate students from 
UC Davis over the age of 18. None had any prior knowledge of the research motivations or task design prior to 
data collection. Subjects were compensated with $10 Amazon gift cards for every one hour session, regardless of 
their performance on the task. The study procedures were approved by the UC Davis Institutional Review Board 
and all experiments were performed in accordance with relevant guidelines and regulations including that all 
subjects provided informed consent.

Subjects performed one session of the experiment per day, with each session consisting of three blocks 
lasting 15 min and separated by short breaks. The first session was used as a training session, and the data was 
not analyzed. Subjects completed either three or four non-training sessions, with three subjects electing not to 
return for the final session.

Change detection task. Subjects were asked to perform an auditory change detection task. They were 
seated in an isolated room and given headphones to listen to the stimulus. The testing apparatus consisted of 
three ports with LEDs that indicated whether a port could be used, and IR sensors that detected when a finger 
was inserted into a port. The stimuli were generated with Psychtoolbox and programmed in MATLAB. The task 
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was controlled through BPod which recorded the behavioral responses in real time. Auditory feedback was gen-
erated by the PC and played through the headphones.

Subjects were instructed to report a change in the underlying rate of a series of clicks randomly generated by 
a Poisson process. The change in rate could be either an increase or a decrease. The underlying rate was initially 
60 Hz. For all trials the frequency changed with equal probability by ± 10, ± 30, or ± 50 Hz. We intentionally kept 
the lowest click rate above 10 Hz to maintain a flutter percept such that individual clicks could not be counted. 
However, in order to have psychometric functions spanning a range of performance levels, our resulting stimuli 
span a range of flutter and potentially some forms of pitch  percepts30. There was always a minimum of 1 s before 
any change, after which the change time was drawn from an exponential distribution with a mean of 3.5 s and 
truncated at a maximum of 7.5 s. The exponential distribution results in a flat hazard rate of the stimulus change 
between the 1-s pre-change period and the 7.5-s maximum, so the probability of the change occurring did not 
vary throughout most of the trial. Before each trial, a cue on the computer screen displayed a word indicating 
what type of trial would occur. The cues were either informative, stating “increase” or “decrease”, or uninforma-
tive, stating “either”. The trial type was chosen at random, with a 50% chance of the trial being informed. For 
uninformed trials, the change direction was chosen at random with a 50% chance of the trial being an increase. 
This resulted in an equal amount of informed and uninformed trials, and increase and decrease trials (Table 1).

At the start of each trial, an illuminated LED in the center port of the apparatus indicated the trial was ready to 
begin, and the trial cue appeared on screen. Subjects inserted their finger into the port to start the trial, triggering 
the onset of the auditory stimulus. Finger pokes were detected by the finger obstructing an infrared light across 
the port. Subjects were instructed to keep their finger in the port until they detected the change in click rate, at 
which point they were instructed to remove their finger immediately which ended the stimulus. If subjects did 
not remove their finger within a 0.8 s response window after the change, the stimulus would end automatically. 
If the subject removed their finger within the response window, side LEDs illuminated indicating that the subject 
should report whether they thought the change was an increase or decrease in click rate. If the subject responded 
to the change within the response window and correctly reported the direction of change, this trial was a “hit”. 
Trials in which subjects responded within the response window but reported the incorrect direction were few 
in quantity and were therefore not analyzed. There were two primary types of errors: premature responses, or 
‘false alarms’, and failures to respond, or ‘misses’. In the case of false alarms, subjects were instructed to report 
the direction that they actually responded to, even if this was different than what the cue indicated. In the case 
of misses, the side LED corresponding to the correct direction of change briefly illuminated at the end of the 
trial. Immediately following the direction report, feedback was given via a high or low pitched auditory tone to 
indicate success or failure on that trial respectively. There were two additional types of errors that signified lapses 
in attention to the task–responses opposite the informative cue or responses within 0.75 s of the trial start–that 
were excluded from analysis.

Psychometric functions. Psychometric functions were computed for individual subjects and for pooled 
subject data. Hit rates, false alarm rates, and reaction times were calculated for each of the four trial categories: 
informed increase, informed decrease, uninformed increase, and uninformed decrease. Hit rates were calculated 
for each change delta in each category as the ratio of ‘hits’ to the number of trials where a change occurred; 
therefore false alarms were excluded from the calculation. 95% confidence intervals were calculated using the 
MATLAB binofit function. To quantify performance changes between uninformed and informed conditions 
the change delta associated with a 50% hit rate was estimated by fitting a sigmoid curve to the hit rates at each 
change delta in each trial category. Confidence intervals were constructed for this threshold change delta with a 
bootstrapping method wherein thresholds were computed from hit rate curves constructed from data matching 
the trial count resampled 1000 times with replacement. The 95% confidence intervals were estimated as the 5th 
and 95th percentiles of the bootstrapped thresholds.

Informed false alarm rates were calculated as the ratio of informed false alarms to the total number of trials 
in each informed condition. False alarms with responses opposite the cue were excluded from the calculation. 
Uninformed false alarm rates in each direction were calculated as the ratio of false alarms in one direction to 
the total number of uninformed trials minus the false alarms in the other direction. This exclusion attempts to 

Table 1.  Trial condition counts for each subject and totals for combined subject analysis.

Subject Informed increase Informed decrease Uninformed increase Uninformed decrease

1 379 374 405 390

2 555 559 556 532

3 451 428 475 463

4 541 561 544 600

5 510 526 511 533

6 551 545 511 510

7 390 400 419 427

8 345 364 372 380

9 415 410 440 417

Combined 4137 4167 4233 4252
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account for the possibility that a false alarm in one direction masks the potential for a later false alarm in the other 
direction. 95% confidence intervals were calculated using the MATLAB binofit function. Confidence intervals 
for false alarm rate differences between conditions were calculated using a bootstrapping method where rate 
differences were calculated from data matching the trial count resampled 1000 times with replacement. The 95% 
confidence intervals were estimated as the 5th and 95th percentiles of the bootstrapped differences.

Reaction times were calculated as the time from the click rate change to the subject’s response. The 95% 
confidence intervals were estimated as the 5th and 95th percentiles of 1000 bootstrapped means.

Psychophysical reverse correlations. We utilized psychophysical reverse correlations (RC) of false 
alarms to investigate how subjects evaluate evidence in different trial  conditions11,31–33. RC ‘kernels’ were pro-
duced by aligning false alarm trial stimuli to the time of the response, computing instantaneous click rates by 
convolving the click times with a half Gaussian filter (σ = 0.075 s), and averaging over all trials grouped by cue 
and response direction. False alarms with responses opposite the cue were excluded from the calculation. To 
quantitatively compare the RC kernels, we computed the average change in click frequencies from baseline for 
each category of false alarms. This was done by counting the number of clicks in the 1 s window preceding the 
false alarm and subtracting the baseline rate of 60 Hz. The 95% confidence intervals were estimated as the 5th 
and 95th percentiles of 1000 bootstrapped values. We also estimated the timescale of evidence evaluation by 
computing the start of the RC kernel in each trial type. Kernel starts and confidence intervals were estimated 
by fitting a piecewise linear function from the baseline to the kernel start and from the kernel start to the kernel 
maximum (or minimum).

Statistical significance. Hypothesis testing was performed using a bootstrap method to avoid assump-
tions about the underlying  distributions34. Test statistics were computed from 1000 bootstrap data sets sampled 
with replacement from a pseudo null distribution that contain the same number of trials as the original data 
set. For 50% hit rate threshold and false alarm rate differences between informed and uninformed conditions, a 
one-sided p-value was calculated from the number of bootstrapped differences that were opposite in sign to the 
average differences for increasing and decreasing stimuli. For all other metrics, t-statistics were calculated based 
on the null hypothesis that the metrics came from the same underlying distribution, so bootstrap data sets were 
sampled from a pseudo null distribution containing all values from both data sets. Two-sided p-values were 
computed from these statistics from the number of bootstrap statistics whose absolute values were greater than 
the absolute value of the test statistic computed from the unmodified data set.

Model based analysis. To generate a better algorithmic understanding of the differences in decision mak-
ing processes between trial conditions, we fit sequential sampling behavioral models separately to informed 
increase, informed decrease, and uninformed trials from individual and combined subject data. In general, the 
model estimates a response time for each trial by convolving the clicks with an exponential filter to produce a 
decision variable (DV), determining when the DV crosses a bound, and adding a non-decision time (NDT) 
delay to account for sensory and motor delays (Fig. 5). To account for behavioral variability, we added noise 
to this process and computed response time (RT) distributions. Variability was added to the NDT to properly 
account for variability in perceptual and motor delays. In addition, lack of NDT variability in the model would 
result in zero likelihood for any RT shorter than the mean NDT and therefore force the mean NDT parameter 
to be shorter than the fastest measured RT. We fit our model to the behavioral data by maximizing the likeli-
hood that the subjects’ response times could be produced by our model parameters: exponential filter width (τ), 
bounds, mean NDT (μNDT), NDT variability (σNDT), and process noise (σprocess). Models for the informed condi-
tions consisted of a single process with a single high or low bound, whereas the uninformed model consisted of 
two processes: one to detect increases and the other to detect decreases. We also compared two different versions 
of the uninformed model: one with separate filter widths per process and another with a shared filter width. 
We found NDT variability did not differ between trial conditions and therefore models for all three conditions 
were fit simultaneously sharing the same NDT variance parameter, which slightly reduced the overall model 
complexity.

The model uses the click stimulus to drive the dynamics of a decision variable that is governed by an Orn-
stein–Uhlenbeck (OU) process. This is equivalent to a drift–diffusion process where clicks act as a time-varying 
drift term whose contributions to the decision variable decay over time exponentially. The exponential form of 
this decay has the benefit of conferring the Markov property to the decision variable, therefore rendering its cur-
rent state independent from all prior states. Other functional forms of this decay could be employed in theory, 
such as a half Gaussian filter, but in that case, the DV trajectory would depend on its prior states. For example, 
consider applying a half Gaussian filter during a period without clicks. In this scenario, the future DV trajectory 
would differ depending on the exact times of prior clicks, even when starting from the same value, because the 
contribution of more recent clicks will decay at a slower rate than that of clicks further in the past due to the 
shape of the Gaussian. This time-varying decay rate significantly complicates the behavioral model; therefore we 
deemed the OU process most amenable to the robust modeling approach we employed.

The OU process is described with the following  input35:

where a is the DV (in Hz), c is the DV input within each interval, σprocess represents noise at the level of the DV, 
and dW is white noise. For our purposes, c was calculated as:

(1)da = −(a/τ + c)dt + σprocess dW
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where C is the number of clicks in each time interval. Dividing the click frequency in the time interval (C/dt) by 
the filter width scales the DV units to Hz, which allows for direct parameter comparison across trial conditions 
with different filter widths. Finally, because previous work with Poisson click-based auditory decision tasks 
revealed click input  depression35, we also applied a version of the model that incorporated input depression. 
With no depression, each click contributes 1 unit to C as described above. With depression, the click magnitude 
C is multiplied by a scale factor after each click that then recovers towards the unadapted value of 1 with a time 
constant set by another term. For this procedure, we used the maximal depression terms found in previous 
human subjects in a Poisson clicks task: a depression scale factor of 0.45 and time constant of 0.02  s35.

To calculate RT distributions for each trial, we used a discretized solution to the Fokker–Planck equation 
corresponding to Eq. (1) with a timestep (dt) of 0.02 s. With this solution, we propagated a discretized probability 
distribution of DVs for each trial starting from DV = 0 at t =  035. This propagation was performed in two segments: 
first without bounds for 0.8 s, then with upper and/or lower ‘sticky’ bounds depending on the trial type. Informed 
increase trials used an upper bound, informed decrease trials used a lower bound, and uninformed trials used 
both an upper and lower bound. Sticky bounds were implemented so that any portion of the DV distribution 
that crossed these bounds would persist there, and thus, the proportion of the DV distribution that had crossed 
a bound would accumulate over time. The first DV propagation segment is designed to correspond to the period 
of time right after stimulus onset where subjects know there is no change and do not need to respond. This is 
especially important when implementing lower sticky bounds to establish a baseline DV estimate that is higher 
than the lower bound. The time of 0.8 s was chosen as a reasonable minimum for the subjects’ estimate of the 
change detection task’s baseline period (fewer than 1% of all trials had responses in this time period, with the 
vast majority being within 0.1 s corresponding to failures to completely obstruct the infrared light used to detect 
finger pokes).We used the proportion of the DV distribution that crossed each bound within each time bin as the 
bound crossing probability distribution, and then computed RT distributions by convolving the bound crossing 
distribution with a Gaussian NDT filter parameterized by μNDT and σNDT. Uninformed trials had separate RT 
distributions for responding to increases and decreases that were computed as joint distributions of responding 
to changes in one direction over the other.

The likelihood of each trial was calculated from the RT distribution by summing the distribution values in 
a 0.2 s window around the subject’s response time. Uninformed trials used the RT distribution corresponding 
to the reported direction of the response. For ‘miss’ trials where there is no response time, the trial likelihood 
was calculated as the remainder of the DV distribution that did not cross any bounds before the end of the trial. 
Optimal parameters were found by maximizing the cumulative log likelihood over all trials using both Bayesian 
Adaptive Direct Search (BADS)36 and Variational Bayesian Monte Carlo (VBMC)37,38 optimization algorithms. 
These algorithms were chosen because they were both designed to solve difficult optimization problems with 
non-analytical likelihood calculations, and VBMC allows for confidence interval estimation. BADS was first 
used to find a region of the parameter space with a high likelihood. The returned parameters were then used as 
the starting point for VBMC, which simultaneously estimates posterior distributions of the model parameters 
and a lower bound of the log model evidence (ELBO). VBMC requires a prior over the parameters, and since 
we made no assumptions about the parameter distributions, we used a uniform prior over the range of possible 
parameter values. Optimal values were estimated as the mean of 100,000 samples randomly drawn from each 
approximated posterior distribution. 95% confidence intervals were estimated as the 5th and 95th quantiles of the 
same random samples. Hypothesis testing between analogous parameters across trial conditions was performed 
by a two-tailed t-test calculated from a t-statistic on the parameter differences. ELBO values are analogous to the 
Bayes factor and were used for model selection. Multiple model fits were run with varying starting parameter 
values to ensure the optimal parameters were consistently found.

Results
Task structure. In this experiment, nine subjects performed an auditory change detection task (Fig. 1; see 
methods for details). They listened to a stream of auditory clicks generated by a 60 Hz Poisson process while 
holding their index finger in a response port. Subjects were told to remove their finger when they detected either 
an increase or decrease in the generative click rate. The timing and magnitude of the change were randomly cho-
sen. At the start of each trial a cue either informed subjects of the direction of the change by stating “increase” 
or “decrease”, or the cue was uninformative and stated “either”. At the end of each trial with a reported change, 
subjects then reported the direction of perceived change.

Task performance. All the subjects learned the change detection task quickly and their performance pla-
teaued after a pre-experimental practice session. Subject performance depended on the informed and unin-
formed task conditions (Fig. 2). Similar to results from related  experiments11,12,39, the hit rate of the informed 
trials for increasing stimuli was lowest at the smallest stimulus delta (10 Hz), and increased until peaking at 
the largest delta (50 Hz), with a psychometric threshold (50% hit rate) at a delta of 30.4 Hz (CI: 29.2 to 31.5). 
This psychometric function shows that subjects were attending to the stimuli. Performance on informed tri-
als followed a similar trajectory for the decreasing stimuli. Hit rates were the lowest at −10 Hz and the highest 
at −50 Hz. The psychometric threshold for these trials was −27.7 Hz (CI: −28.6 to −26.9).

Performance was noticeably different in the uninformed condition. While hit rates followed the same pat-
tern of increasing with the absolute magnitude of the stimulus change, hit rates were lower than the informed 
condition for all stimuli, on average. Uninformed trials with increasing stimuli had a psychometric threshold 
of 38.6 Hz (CI: 37.4 to 39.7), which was significantly higher than informed trials (p < 0.001). Uninformed trials 

(2)c = C/(dt ∗ τ )
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with decreasing stimuli had a psychometric threshold of −32.4 Hz (CI: −33.1 to −31.7), which was significantly 
larger in magnitude than informed trials (p < 0.001). These differences were consistent across subjects for both 
the increasing and decreasing stimuli (Fig. 2B, Supplementary Table S1).

We also measured the reaction times of hit trials. Consistently, reaction times were longer in the uninformed 
condition than the informed condition, with subjects responding more quickly to changes when the cue was 
informative. The average reaction time on uninformed trials was 0.54 s (CI: 0.54–0.55), and on informed trials, 
it was 0.50 s (CI: 0.49–0.51), with consistent differences of this type across subjects regardless of whether it was 
detection of increasing or decreasing stimuli (Fig. 2C, Supplementary Table S2).

Finally, we examined the false alarm rate for each trial type. The average rate was 18.9% (CI: 18.91–18.94) and 
13.3% (CI: 13.31–13.33) for the informed condition, and 11.2% (CI: 11.18–11.20) and 5.7% (CI: 5.70–5.72) for 
the uninformed condition, for increasing and decreasing stimulus trials respectively (Fig. 3A). When plotting 
the difference between informed and uninformed false alarm rates in Fig. 3B, we found that in both increasing 
and decreasing trial groups, the difference was positive (μ: 0.077, CI: 0.063–0.092 and μ: 0.076, CI: 0.066–0.087, 
respectively). In other words, the false alarm rates were higher in the informed condition than the uninformed 
condition. These differences were consistent across subjects for both the increasing and decreasing stimuli 
(Fig. 3C, Supplementary Table S3).

Model-free analysis. To further assess the differences between trial conditions, we computed the psycho-
physical reverse correlation (RC) kernels for false alarms of each trial type. The RC kernels were calculated by 
convolving the click times with a causal half Gaussian filter and aligning the result to the time of the response 

Figure 1.  Schematic of change detection task. An illuminated LED indicates the trial is ready to begin. The 
computer screen displays a word indicating what type of trial will occur. The cues are either informative, stating 
“increase” or “decrease”, or uninformative, stating “either”. Subjects insert their finger into the port, triggering the 
onset of a stochastic auditory stimulus and keep their finger in the port until they detect the change in click rate 
upon which they remove their finger. Then they insert their finger into either the left port to report a decrease or 
the right port to report an increase.

Figure 2.  Hit rates and reaction times. (A) Performance plotted as a function of the change in click rate for 
each trial condition. Colored dashed lines indicate fits by logistic curves and the dashed line indicates a 50% 
hit rate psychometric threshold. Data is combined from all subjects. (B) The psychometric threshold for each 
subject in the informed and uninformed conditions of both increasing and decreasing stimuli trials. (C) Average 
hit rate reaction times of each subject for increasing and decreasing stimuli in the informed versus uninformed 
conditions. All error bars indicate 95% confidence intervals. N = 9 subjects.
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for each false alarm trial. This allowed us to reconstruct the average stimulus that preceded a false alarm in order 
to discern the influence of the stimulus on the false alarm decision. Segments where the RC kernel varies from 
the baseline click rate indicate the average periods and stimulus magnitudes that influenced the subsequent 
choice. In our data, increasing false alarms were preceded by an increase in click rate and decreasing false alarms 
were preceded by a decrease in click rate (Fig. 4A). The RC kernels also suggest there was a larger change in 
the stimulus to cause a false alarm in uninformed conditions than in informed conditions, for both increases 
and decreases. To confirm this difference across subjects, we compared average click rate deviations from the 
baseline rate over one second preceding a false alarm for each condition (Fig. 4B). For increasing false alarms, 
uninformed trials had a larger increase from the baseline stimulus than informed trials. Similarly for decreas-
ing false alarms, uninformed trials had a larger decrease from the baseline than informed trials (Supplementary 
Table S4).

The starting points of the RC kernels serve as an estimate for the timescale of evidence evaluation. For exam-
ple, an earlier starting point indicates a longer timescale. We found that the starting points of the RC kernels 
for increasing trials was slightly shorter in the informed condition at −0.80 s (CI: −0.81 to −0.77) than the unin-
formed condition at −0.82 s (CI: −0.85 to −0.79). In decreasing trials, the start time of the informed condition was 
significantly shorter at −0.49 s (CI: −0.50 to −0.47, p < 0.05) than the uninformed condition at −0.80 s (CI: −0.83 
to −0.77). In sum, the RC kernels suggested that subjects may adjust both decision bounds and decision filters 
in the different conditions.

Figure 3.  False alarm rates. (A) False alarm rate for each trial condition. Data is combined from all subjects. (B) 
Difference between informed and uninformed false alarm rates for combined subject data. (C) Informed and 
uninformed false alarm rates for each subject. All error bars indicate 95% confidence intervals. N = 9 subjects.

Figure 4.  False alarm RC kernels. (A) Detection kernels of different trial types for pooled subject data. Shaded 
regions indicate the standard error of the mean. Arrows indicate the kernel start point. Dashed line indicates 
baseline click rate. Data is combined from all subjects. (B) The average deviation in click rate from the baseline 
preceding a false alarm for increasing and decreasing trials. Error bars indicate 95% confidence intervals. N = 9 
subjects.
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Model-based analysis. To further characterize the behavioral adjustments suggested by our model-free 
analyses, we fit subject responses to a sequential sampling behavioral model that parametrizes both decision fil-
ters and bounds. In general, these models predict a response time for a given stimulus by estimating the value of 
a decision variable over time and responding when the decision variable crosses a detection bound. Specifically, 
our model estimates the decision variable by convolving stimulus clicks with an exponential detection filter, and 
computes the response time by adding a non-decision time component to the bound crossing time to account for 
sensory and motor delays in responding. Thus, our model includes five free parameters: filter width, noise ampli-
tude, bound, non-decision time, and non-decision time variability (see methods). In total, three separate models 
were fit to trials grouped by cue (informed increase, informed decrease, and uninformed) from both individual 
and combined subject data. Informed models contained a single process to detect either increasing or decreasing 
stimuli depending on the cue (Fig. 5A), whereas uninformed models contained two separate processes to detect 
both increasing or decreasing stimuli (Fig. 5B). Each model was fit to the behavioral data by maximizing the 
likelihood that the subjects’ response times could be produced by the model parameters.

We used this modeling framework to better understand how subjects alter their decision making process 
when they are informed versus uninformed about the direction of stimulus change. To this end, we asked whether 
behavior in uninformed conditions was better explained by a model with separate or shared detection filters 

Figure 5.  Model schematic. (A) Model schematic for informative trials. A decision filter is convolved with the 
stimulus to generate the decision variable. When the decision variable crosses the detection bound, a choice is 
made. (B) Model schematic for uninformative trials. The stimulus may be either increasing or decreasing. Either 
a shared filter can be used regardless of increasing or decreasing stimuli (top) or two different filter widths can 
be used simultaneously (bottom).
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(Fig. 5B). To best characterize the difference between these two model configurations, we fit the behavioral data 
in the uninformed condition to two separate single-bound models: one where the models had independent filter 
widths (λ) and another where they shared a single filter width. By comparing the two conditions in this way, we 
were able to isolate the effects of constraining the filter widths because any differences between the two fits are 
not explainable by the other model parameters.

Model fit improvement was characterized by comparing log model evidence lower bound (ELBO) values 
between each fit. ELBO values are analogous to Bayes factors and naturally penalize overfitting, which allows us 
to compare each model even though they contain different numbers of  parameters36,37. The ELBO metric favored 
the model with unshared filter width parameters for both the combined behavioral data (ELBO difference = 341) 
and for all nine subjects (mean ELBO difference = 41; Range: 5–110). Similar results were found using Bayesian 
Information Criterion and Akaike Information Criteria for model comparison. We tested a variety of model 
formulations where the mean non-decision time (NDT), the NDT variance, and the noise term were additionally 
shared either between the two models for the uninformed condition or between models for all conditions. These 
variants yielded results consistent with those reported here, which are produced from the formulation with only 
the NDT variance shared across all models.

In addition to improved ELBO values, the model with separate filter widths produced psychometrics that 
matched the experimental data very well without explicitly fitting the model to these metrics (Fig. 6A, B, Supple-
mentary Figures S5–S7). This further suggests that subjects used separate decision making processes that operated 
simultaneously with distinct timescales of evidence evaluation. Indeed, fits on individual subject data consistently 
revealed shorter filter widths for detecting decrease changes than those for detecting increase changes (Fig. 6C).

To ensure that the longer filter width to detect increases does not simply arise from input depression during 
faster click rates, we additionally incorporated input depression into our model using the maximal depression 
terms found in a prior human psychophysics auditory Poisson clicks task: a depression scale factor of 0.45 and 
time constant of 20  ms35. We found that with depression, the best fit filter widths were even wider for increases 
than decreases compared to the model without depression (Supplementary Figure S8). Therefore, input depres-
sion cannot account for the differences in filter widths that we found. In total, all of our model-based analyses 
support our conclusion that behavior in the uninformed condition was better explained by a model configuration 
with separate decision filter widths, suggesting that subjects simultaneously used distinct timescales of evidence 
evaluation to make their decisions.

To better understand how subjects adjusted their decision process when cued to the nature of the change, we 
compared how the four major model parameters (filter width, bound, noise amplitude and non-decision time) 
varied between informed and uninformed conditions for each change detection process (increase or decrease). 
For increasing stimuli, we found that the primary change in the decision process could be described as a change 
in the detection bound. The model fit to combined subject data showed a significant decrease in the bound when 
subjects were informed (83.9 Hz versus 78.3 Hz, p < 0.001) (Fig. 7A, Supplementary Table S9), which is consist-
ent with our model-free analysis. Additionally, models fit to individual subject data revealed the same trend in 
eight of the nine subjects (Fig. 7B). Although other parameters seemed to vary slightly between conditions when 
fit to the combined subject data (such as filter width, Fig. 7A), these differences were not as consistent across 
subjects (Fig. 7C). For decreasing stimuli, we found that the change in the decision process was more complex, 
as the filter width, noise, and bound all seemed to change by a substantial amount (Fig. 7D). In contrast to the 
increasing stimuli, the change in the filter width was consistent across subjects for decreasing stimuli, but the 
change in bound was not (Fig. 7E, F). Further comparing differences between increase and decrease model 
parameters, there seems to be a robustly different set of optimal values depending on the change direction, which 
can be most strongly seen in the filter width being substantially longer for increasing stimuli. This suggests that 
optimizing the ability to detect changes in different directions requires different parameter tunings. With this 

Figure 6.  Model fit. (A) Experimental combined subject data with performance plotted as a function of change 
in click rates compared to the estimated model performance. (B) Experimental false alarm rates for combined 
subject data in each trial condition compared to estimated model false alarm rates. (C) Unshared filter width 
parameter pairs in uninformed models fit to individual subject data. All error bars indicate 95% confidence 
intervals. N = 9 subjects.
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understanding, we found that uninformed decrease change detection parameters were generally pulled away 
from their optimal informed values toward their optimal increase detection values, which can be seen especially 
strongly by the increased filter width (compare Fig. 7D with Fig. 7A).

To further ensure that any parameter differences were not due to the stochastic nature of the model fitting 
process, we performed a parameter recovery exercise wherein we fit our model to synthetic data generated from 
a range of model parameters, and then compared these ‘true’ values to the resulting best-fit values. We found 
that the parameter values for filter width, noise, and bound were recovered with high precision and little bias 
for all models across conditions (Supplementary Figure S10). For mean non-decision time, there was a slight 
trend for recovered parameters to overshoot known values by 15–20 ms, however this did not adversely affect 
the recovery of the other parameters, and it was a consistent bias across conditions.

Discussion
We used a stochastic auditory change point detection task to investigate how knowledge about the space of pos-
sible changes affects human change point detection. In our task, changes to the generative click rate in either 
direction occurred at unpredictable times, and subjects received either an uninformative or an informative cue 
about the direction of the impending change. Through model-free and model-based analysis we found two pri-
mary conclusions: subjects use knowledge about the dimension of the change to narrow their ‘decision criteria’, 
and subjects are able to process the same sensory information over multiple distinct timescales.

From the behavioral results, subjects were able to discern changes at a greater rate and in a shorter amount of 
time when they were informed of the direction of the change (Fig. 2A, C). However, this improved performance 
came at the cost of an increase in false alarms (Fig. 3). When comparing the false alarm trials between conditions 
with psychophysical reverse correlation analyses, we found that subjects responded to smaller deviations from 
the baseline click rate when they were informed about the direction of the change (Fig. 4). This suggests that 
subjects narrowed their ‘decision criteria’ when they were able to reduce the number of attended dimensions in 
the stimulus stream. By reduced ‘decision criteria’, we imply that subjects required less evidence to commit to 
their decision, which meant subjects were able to react faster and were more likely to respond to changes when 

Figure 7.  Model parameters (A) Increase change detection parameters for the informed and uninformed 
conditions fit to combined subject data. (B) Increase bound values between informed and uninformed 
conditions from models fit to individual subject data. (C) Increase detection filter widths between informed and 
uninformed conditions from models fit to individual subject data. (D) Decrease change detection parameters 
for the informed and uninformed conditions fit to combined subject data. (E) Decrease bound values between 
informed and uninformed conditions from models fit to individual subject data. (F) Decrease detection filter 
widths between informed and uninformed conditions from models fit to individual subject data. All error bars 
indicate 95% confidence intervals. N = 9 subjects.
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they did happen. Further supporting this claim, a reduced evidence threshold would make subjects more likely 
to falsely respond to stimulus noise, which we also found to be the case. The question still remained, however, 
how this reduced bound can be implemented. Intuitively, we can imagine three main non-mutually exclusive 
implementations that could account for this behavior: improving the ability to remember past stimuli to compare 
with current stimuli to better discern changes, reducing the amount of evidence required to suggest that the 
new stimuli are different from past stimuli, and increasing the ability to filter out stimulus noise while making 
this comparison. To better understand how these implementations might explain our behavioral results, we 
developed a model that incorporates terms for all of these scenarios (filter width, bound, and noise, respectively) 
and fit it to our data.

When comparing best-fit model parameters between informed and uninformed conditions, we generally 
found what looked to be different implementations depending on the direction of the change. One consistency 
between directions is that our models suggest subjects were not able to improve the signal-to-noise ratio of the 
underlying evidence, as characterized by our noise term. Rather than being able to directly increase perceptual 
sensitivity, subjects seemed to improve their change detection capacity with a mixture of adjustments to their 
decision bounds and timescales of evidence evaluation. This is consistent with other studies suggesting an 
important role of changes in the decision criterion for improvements in performance that occur with attentional 
 cues28,29. This is important because improvements in accuracy with cuing are often ascribed to attentional pro-
cesses sometimes thought to improve perceptual  sensitivity20,21. We do not rule out that improved signal to noise 
can be important for change detection behavior, but it is interesting that we find no evidence for it, even with 
the cuing manipulation that we perform. An implementation that was unique for cues informing increases was 
that subjects reduced their decision bound, consistent with the inferences drawn from our model-free analyses. 
This suggests that subjects reduce the amount of evidence required to commit to the decision when there are 
fewer alternatives to detect and is reminiscent of the reductions in decision bounds found in discrimination tasks 
with fewer alternatives to  consider40. Supporting this claim, neural correlates that are potentially consistent with 
higher decision thresholds when considering multiple  alternatives41 have been reported in parietal  cortex40,42,43, 
frontal  cortex44,45, and subcortical regions involved in action  selection46,47. However, none of those studies 
involved change point detection, so it would be interesting to explore whether similar neural mechanisms may 
be involved in our task. For decreasing changes, the model suggested that all three decision criteria parameters 
were adjusted when subjects were informed. From our results, we are not able to conclude that any one change 
was more important than the other, but in general each of the parameters moved in a direction toward their best 
fit values for cued increase trials when subjects were uninformed. This result seems to suggest that there may be 
some resource sharing between the two processes when both change directions were attended to simultaneously.

When comparing parameters between informed conditions, we found that there were distinct differences in 
the best fit values, especially in regard to filter width. We speculate that this difference may relate to an important 
asymmetry for detecting increase changes versus decrease changes in our task, as can be seen in the behavioral 
psychometrics. In terms of our model, the decision variable moves closer to the increase decision bound in a 
stepwise manner with each click, and may therefore be more susceptible to noise and explain higher false alarm 
rates for detecting increases. In contrast, the decision variable smoothly decays toward the decrease decision 
bound in the absence of clicks and may therefore be more robust to noise and explain lower false alarm rates 
for detecting increases. This asymmetry can best be seen in the model’s filter width terms. In order to respond 
quickly to decreases, it makes sense that the decision value should decay toward the decrease bound faster than 
when detecting increases, which we found to be the case in our model fits. Additionally, a longer filter width 
smooths the decision value’s upward trajectory thereby moderating the influence of stimulus noise, such as short 
bursts of clicks. With this understanding of the differences between increase and decrease detection processes, 
we investigated whether the data from the uninformed condition could be best described by two detection 
processes with a shared filter width, or by two completely separate detection processes, each with their own 
timescale of evidence evaluation. We found that the latter best explained our data, which suggests subjects were 
able to evaluate the same stimuli over multiple timescales simultaneously.

The idea of distinct processes for increase and decrease change detection is supported by prior work that 
suggests behavioral performance on decision making tasks with multiple alternatives is best explained by parallel 
decision  processes41. The additional finding that each process employs distinct timescales of evidence evaluation 
on the same sensory stimulus closely mirrors results from a previous experiment in our lab, where confidence 
in a change point detection had a longer timescale of evidence evaluation than the timescale required to detect 
the  change12. Our results also fit nicely with prior studies, from our lab and others, that show subjects can flex-
ibly adjust their timescales of evidence evaluation on the same sensory stimuli based on task demands. For 
example, in the visual and auditory domains, humans adjust their timescale of evidence evaluation to match the 
distribution of signal durations and timing they  experience10,39,48–50. Humans can also adjust their timescales of 
evidence evaluation when classifying the location of visual stimuli, using a shorter timescale in more volatile 
environments and a longer timescale in more stable  environments9. Likewise, both humans and rats can adjust 
their timescales of evidence evaluation in a similar manner when discriminating the current state of a changing 
sensory stimulus, using a shorter timescale when the stimulus changes more often and a longer timescale when 
it changes less  often8,9. A distinct difference between the prior studies and ours is that all of these previous find-
ings derived from tasks that involved a timescale of evidence evaluation that varied over blocks of trials, giving 
subjects time to adapt to a new optimal evaluation period. In contrast, we demonstrate that subjects were able 
to rapidly change their timescales on a trial-by-trial basis, and additionally, were able to simultaneously process 
the same sensory stream with multiple timescales when needed.

Recent work has shown that even in situations where sensory evidence for multiple decisions can be acquired 
in parallel along distinct stimulus dimensions, there can exist a bottleneck that limits updating of decision 
variables to one at a  time51. In that work, decision variables were found to be held in two distinct buffers with 
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time-multiplexed updating of each in turn. Our results do not rule out the possibility of a similar bottleneck 
for our detection task with buffers for decision variables for increases and decreases that each involve differ-
ent timescales of evidence evaluation. In describing the processing as “simultaneous”, we therefore do not rule 
out high frequency time-multiplexed components of the processing, and our experiments were not designed 
to address this question. It is also possible that detection of increases and decreases involves decision variables 
based on different sources of evidence. For example, periods of silence may inform decrease detections while 
clicks themselves may inform increase detections.

Related to this, we do not know if perceptions for lower and higher click rates in our task are supported by 
overlapping or distinct processing channels. Periodic sounds within the frequency range of the click rates of 
our task have percepts that range from flutter to those having a character of  pitch30, which may imply different 
processing channels that depend on frequency. Regardless of the source of sensory evidence for the detection 
decisions, our results suggest the capacity to simultaneously evaluate evidence along multiple timescales.

This capacity provides insight into potential underlying neural mechanisms. It seems to rule out mechanisms 
that allow only a single timescale of evaluation for a particular source or stream of evidence, even if that timescale 
is tunable. Instead, any proposed neural mechanism must be able to support at least two distinct timescales. One 
potential mechanism would involve distinct neural populations with separately tunable timescales that process 
the same stream of evidence in parallel. It is also possible that interactions between distinct decision variables for 
increase and decrease detection may play a role in controlling their timescales. For example, previous work has 
demonstrated the importance of inhibitory interactions between leaky competing accumulators in determining 
timescales of evidence  evaluation7,48,52. Another contrasting mechanism involves a single population of neurons 
that contains a heterogeneity of  timescales53–57, which is suggested by a number of network  architectures58,59. 
One advantage of these architectures is that they readily support evidence evaluation across multiple timescales 
without information loss or re-tuning of the networks involved in the evaluation process. However, our results 
do not provide clear support for either of these implementations over the other.

Overall, our data supports the idea that parallel evaluation of the same stream of evidence can occur along 
distinct timescales for change detection with multiple alternatives. Furthermore, cued attention narrows the 
decision space and allows observers to make changes in decision processes that improve performance. These 
results establish three important capacities of information processing for decision making that any proposed 
neural mechanism of evidence evaluation must be able to support: the ability to simultaneously employ multiple 
timescales of evidence evaluation, the ability to rapidly adjust those timescales, and the ability to modify the 
amount of information required to make a decision in the context of flexible timescales. Future work will be 
needed to bridge the gap from these capacities to the neural mechanisms that support them.
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