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Imagine that you are doing a field survey in India, and 
the guide reminds you to be cautious of a tiger hiding 
in the grasslands. The environment might be filled with 
different types of animals, but as you look around, there 
is a limit on how much information can be processed 
in any given moment. Therefore, you must hold a mem-
ory representation of the tiger, known as the target 
template or attentional template, in mind while recur-
sively locating and inspecting candidate creatures until 
the target tiger is found (Malcolm & Henderson, 2010; 
Wolfe, 2021). Although the concept of a target template 
has been a staple of attention research for decades 
(Duncan & Humphreys, 1989; Eriksen, 1953; Green & 
Anderson, 1956), it has been largely assumed to contain 
a single, static, and veridical representation of what we 
are looking for. Recent studies have begun to challenge 
this notion by showing that template representations 
are dynamic and shift “off-veridical” when doing so 
increases the target-to-distractor distinctiveness (Geng 
& Witkowski, 2019).  Our goal in the present study was 

to go further and test the hypothesis that two versions 
of the search template are used at the guidance and 
decision stages of the “look-identify” cycle (Wolfe, 
2021). Although both templates were expected to be 
off-veridical, we hypothesized that guidance operates 
on a more relational template, whereas target decisions 
rely on a more optimal code.

Standard models of feature-based attention posit that 
the optimal template for a target contains highly spe-
cific information about the veridical features of the 
target (Treue & Trujillo, 1999), but studies in which the 
search target appears predictably among linearly sepa-
rable distractors have found that the target representa-
tion shifts off-veridical away from distractors (Bauer et al., 
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When searching for a target object, we engage in a continuous “look-identify” cycle in which we use known features 
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and when making identity decisions during visual search.

Keywords
visual search, attention, target template, drift-diffusion model, open data

Received 12/28/20; Revision accepted 5/16/21

https://us.sagepub.com/en-us/journals-permissions
http://www.psychologicalscience.org/ps
mailto:xeyu@ucdavis.edu
mailto:jgeng@ucdavis.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F09567976211032225&domain=pdf&date_stamp=2021-12-08


106 Yu et al.

1996; Hodsoll & Humphreys, 2001; Navalpakkam & Itti, 
2007; Scolari et al., 2012). For example, searching for 
an orange tiger among yellow grasslands results in an 
attentional bias toward color values that are redder than 
the actual orange of the tiger. Becker and colleagues 
(Becker, 2010; Martin & Becker, 2018) proposed that 
this effect occurs because observers use a relational 
rule to guide attention and their first saccades toward 
the reddest object in the visual environment. In con-
trast, other researchers have argued that the bias is due 
to an optimal shift in the central tendency of the target 
tuning curve to more effectively discriminate the target 
from distractors (Geng et al., 2017; Navalpakkam & Itti, 
2007; Scolari et al., 2012; Yu & Geng, 2019).

Even though the two positions may seem similar, 
they make very different predictions that have implica-
tions for understanding how target information is 
encoded and flexibly used during visual search. In par-
ticular, the two theories differ in their predictions about 
how inclusive the template is of feature values that are 
opposite from the experienced distractors (i.e., the 
negative color values in Fig. 1). The relational account 
predicts very broad inclusion of negative feature values 
because they all share the relational feature that dis-
criminates the target from expected distractors (e.g., 
the reddest object; Fig. 1a). There must be a boundary 
to relational inclusiveness, but this has not been estab-
lished empirically. The optimal-gain model instead pre-
dicts a shift in the central tendency toward a more 
negative value (e.g., slightly redder than the orange 
target), but inclusion within the template of both nega-
tive and positive color values is scaled by distance from 
the shifted central value (Fig. 1b). These differences 
can be visualized as the width of a response filter (Fig. 1, 
left column) or, more generally, as similarity matrices 
that capture the second-order pattern of expected 
responses (Fig. 1, right column).

One possible explanation for why there appears to 
be evidence for two theories that ostensibly refer to the 
same target template is that they derive from studies 
using different methods. Some researchers use response 
time (RT) or first-saccade destinations as the metric of 
the template (Martin & Becker, 2018), whereas others 
use a separate probe task to measure the learned target 
feature (Navalpakkam & Itti, 2007; Scolari & Serences, 
2009; Yu & Geng, 2019). We hypothesize that these dif-
ferences tap into different stages of the look-identify 
cycle: The first saccade reflects early guidance of atten-
tion to the best match, whereas the probe task requires 
binary decisions regarding target identity. This leads to 
an important question of whether attentional guidance 
and match decisions use the same or different template 
information during visual search. We hypothesize that 
guidance relies on a coarser version of the template and 

match decisions require a more precise representation 
(Bravo & Farid, 2014; Martin & Becker, 2018; Rajsic & 
Woodman, 2020; Wolfe, 2021; Wu et al., 2013).

The template has long been hypothesized to guide 
attention and eye movements to potential targets by 
modulating sensory gain (Desimone & Duncan, 1995; 
Reynolds & Heeger, 2009; Treisman & Gelade, 1980), 
but only more recently has it been explicitly postulated 
to operate on decision processes about the target match 
as well (Bravo & Farid, 2014; Geng & Witkowski, 2019; 
Wolfe, 2012). For example, Hout and Goldinger (2015) 
hypothesized that the target template serves a dual 
function: to guide attention to potentially relevant items 
and to compare visual inputs with the memory template 
for target verification or rejection (see also Rajsic & 
Woodman, 2020). Whereas such studies have used eye 
metrics to measure the effect of the template at two 
time points within the look-identify cycle, few have 
considered whether the information used during guid-
ance and decisions is the same or different. One excep-
tion to this is a proposal by Wolfe (2021) that posits 
that the search template can (and should) be divided 
into two: a guiding template in working memory that 
is used to direct attention to items that might be the 
target and a target template in long-term memory that 
is used to determine whether a candidate object is, in 
fact, the target. The idea that there may be two active 
templates, one for guidance and one for target deci-
sions, is consistent with evidence that it is possible to 

Statement of Relevance

The objects that we look for are often hard to find 
because they are “hidden” among countless other 
objects in complex scenes (e.g., keys in a cluttered 
kitchen). Theories of attention posit that we find 
what we are looking for by holding a veridical 
copy of the target, akin to a photograph of the 
target object, in memory and then guiding our 
attention (by moving our eyes) to template-
matching objects (e.g., shiny metal). However, in 
two experiments, we found evidence that the target 
information used to perform visual search is 
dynamic and may even differ depending on the 
stage of processing. Our results show that the 
target representation is shaped by the distractor 
context and, moreover, that the information used 
to guide initial attention is coarse and “relational,” 
but subsequent decisions about the identity of the 
object (e.g., “those are my keys” or “those are not 
what I’m looking for”) use a precise and “optimal” 
code.
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hold one active template in working memory (to guide 
search) while holding one or more other target repre-
sentations in a latent state within working memory or 
in long-term memory (Olivers et al., 2011; Woodman 
et al., 2013).

Our aim in the current experiments was to test whether 
attentional guidance and target-match decisions rely on 
different information during visual search. Although we 
framed our hypothesis in terms of a single search template 
that has two informational formats during guidance versus 
decisions, the concept is compatible with Wolfe’s (2021) 
characterization of separate templates for guidance and 

the target memory. Using a visual search task for a target 
among linearly separable distractors, we tested the 
hypothesis that early attentional guidance will be based 
on relational information (e.g., prioritizing the reddest 
object irrespective of its exact hue), whereas subsequent 
match decisions will be made against an optimal off-
target feature (e.g., the slightly redder version of the 
orange target). If true, this would suggest that attentional 
guidance operates on a coarser code to weight sensory 
information and that target-match decisions use a more 
precise representation to determine identity. Our findings 
offer a novel perspective on how template information 
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Fig. 1. Simulated responses to colored stimuli (left column) and representational-dissimilarity matrices generated from the same data 
(RDMs; right column), separately for models in which flexibility in the target template is assumed to be either relational (a) or optimal (b). 
The graphs on the left show simulated responses in an experimental context in which the target color (e.g., orange) is depicted at 0° and 
expected distractor colors are positive rotations from the target color (e.g., yellower hues). “Response” refers to any of several possible 
dependent variables, including the probability of a first saccade to an object or a decision that an object is the target. The RDMs on the right 
were generated from the same data computed as the absolute difference between responses to each pair of stimuli. The relational account 
predicts higher attentional priority, and therefore a greater proportion of behavioral responses, to all features that fit the relational rule that 
distinguishes targets from distractors, such as the target being the reddest object. This results in high similarity in expected responses to all 
stimuli with negative values, as illustrated by the dissimilarity matrix. The optimal-gain model predicts a shift in the central tendency of the 
target representation, and all other features are scaled by distance from the center value. This results in scaled similarity for both negative 
and positive feature values. (For a detailed description of how simulated data points were estimated, see the Statistical Analysis section.)



108 Yu et al.

operates to guide attention and make identity decisions 
during visual search.

Experiment 1

The purpose of this experiment was to use eye tracking 
to investigate whether distinct template information is 
used during the guidance and decision-making stages of 
the look-identify visual search cycle. We used eye data 
as our main dependent measure of interest to test the 
hypothesis that guidance (first saccades) will be driven 
by the relative target feature (Fig. 1a) but that match 
decisions (fixation dwell times) will be determined by 
optimal off-target feature tuning (Fig. 1b).

Method

Participants. To determine the appropriate sample size 
for Experiment 1, we first conducted a pilot study with 
seven participants (data were not included in Experiment 
1) using similar methods and procedures. The smallest 
effect size of the two dependent measures of interest (in 
this case, fixation dwell times; r = .55) was entered into 
G*Power (Version 3.1; Faul et al., 2007), which indicated 
that a sample size of 30 was necessary to detect significant 
effects (p = .05, two tailed) with a power of .90. Therefore, 
we recruited 30 participants (20 self-reported as women, 
10 self-reported as men; one left-handed; age range = 
18–23 years) from the University of California, Davis, who 
participated in Experiment 1 in partial fulfillment of a 
course requirement. Each participant provided written 
informed consent in accordance with the National Insti-
tutes of Health’s guidelines for ethical research. Each par-
ticipant’s color vision was assessed by self-report and an 
online color-blindness test (https://colormax.org/color-
blind-test). All participants had normal or corrected-to-
normal vision, and all had typical color vision.

Apparatus. Participants were seated in a sound- 
attenuated room 60 cm from an ASUS MG279Q monitor 
with a spatial resolution of 1,920 × 1,200 pixels and a 
refresh rate of 60 Hz. The operating system was Windows 
7, and Psychophysics Toolbox (Version 3.0.17; Brainard, 
1997; Pelli, 1997) in MATLAB (The MathWorks, Natick, 
MA) was used to create all stimuli. Eye movements were 
tracked using a video-based eye-tracking system (Eye-
Link 1000; SR Research, Kanata, Ontario, Canada) sam-
pling from the right eye at 500 Hz.

Stimuli. All stimuli were presented against a gray back-
ground (luminance = 37.0 cd/m2). The target (194°) and 
distractor colors were selected from a color wheel defined 
in CIELAB color space (coordinates: a = 0, b = 0;  

luminance = 70; from Bae et al., 2015). We used a green-
blue hue as the target color to control for the potential 
color-category effects on responses (Bae et  al., 2015). 
Experiment 1 contained three types of trials: (a) standard 
visual search trials to set up expectations for the distrac-
tor colors, (b) critical visual search trials to assess how 
target templates are used during guidance and decision-
making stages of visual search, and (c) template-probe 
trials to measure the template contents independently of 
simultaneous distractor competition.

In standard visual search trials (Fig. 2), a target and 
five distractor circles (3° × 3°) were located equidistantly 
along an imaginary circle (diameters: 12° × 12°). The 
locations of all six stimuli were randomly rotated 10° 
clockwise or counterclockwise along the imaginary circle 
on every trial to prevent fixed expectations of where 
each stimulus would be located. The color of the five 
distractors was either all negatively or all positively 
rotated 10° from the target color. The rotational direction 
(positive or negative) was counterbalanced across par-
ticipants so that each participant saw only one set of 
distractors (Yu & Geng, 2019). Because the directionality 
of the distractor colors did not affect performance (ps > 
.15; Bayes factor favoring the null over the alternative 
hypothesis [BF01] > 1.30), this factor was not included in 
subsequent analyses to maximize power. For simplicity, 
the distractors from the standard search trials (i.e., 
“trained” distractor colors) will always be referred to as 
having positive color rotations from the target. Each 
object contained either a left- or a right-oriented black 
line (1° of visual angle). Participants were asked to report 
the tilt of the line within the target circle.

Critical search displays (Fig. 2) were identical to the 
standard search displays with one exception: One of 
the regular circle distractors was replaced with a 
dodecagon (this was the critical distractor; Martin & 
Becker, 2018). We used a different shape for the critical 
distractor because we wished to use the true target 
color as a critical distractor to test how observers 
responded to it when the template shifts off-veridical. 
A different shape was used to avoid the presence of 
two target objects on a single trial. The critical-distractor 
color was selected from a range from −60° to 60° from 
the target color, in steps of 15°. This resulted in a total 
of nine possible critical-distractor colors. Among the 
nine colors, the −45° and 45° distractors were focal 
colors within the green and blue color categories, 
respectively. Thus, the ±60° distractors were beyond 
the blue-green color category boundary (Bae et  al., 
2015) and allowed us to interrogate the boundary con-
ditions of the relational and optimal theories.

Probe trials contained a color wheel (12° of visual angle 
radius; 2.1° of visual angle thickness) defined by the same 

https://colormax.org/color-blind-test
https://colormax.org/color-blind-test
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CIELAB color-space coordinates (Fig. 2). The color 
wheel was randomly rotated on each presentation.

Design. Participants completed 20 practice trials before 
the experiment started. The main experiment was com-
posed of 324 standard visual search trials, 324 critical 
visual search trials, and 60 template-probe trials. Trials 
were presented in six blocks. The three types of trials 
were randomly interleaved within each block with the 
constraint that there were no consecutive template-probe 
trials. The locations of the target and distractors were 
randomly selected on each visual search trial. The target 
and critical distractor were equally likely to appear at all 
six possible locations, but the target and critical distractor 
were never adjacent to each other within a trial. Each 
search display contained an equal number of left- or 
right-oriented lines within the objects. The lines within 
the target and critical distractor were equally likely to be 
oriented to the left or right.

Procedure. The target color was presented to the par-
ticipant before the experiment started. Participants were 
encouraged to make a fast and precise eye movement to 
the target but to take their time pressing the response 
button to ensure high accuracy of the manual response. 
A 9-point calibration was performed at the beginning of 
the experiment. To ensure that participants’ eyes were 
fixated on the central square (0.3° × 0.3°; black) at the 
onset of each search display, we began each trial only 
after gaze was detected within a 1.5° × 1.5° box around 

the fixation square for 200 ms. When the display appeared, 
participants searched for the predefined target-color cir-
cle and reported the line orientation inside by pressing 
the left or right mouse button with their right hand. The 
search display was presented until the manual response 
or up to 10 s. Auditory feedback was provided immedi-
ately following the responses (600 Hz tone for correct; 
200 Hz tone for incorrect).

In the probe trials, the color wheel remained on 
screen until the manual response or up to 10 s. Partici-
pants were instructed to report the target color on the 
color wheel by clicking on it with a mouse. No feed-
back was provided in the probe trials. A central fixation 
square was presented for 800 to 1,000 ms between 
trials.

Statistical analysis. The standard visual search trials 
were mainly used to establish expectations for the dis-
tractor colors. Overall search performance was high 
(proportion of correct responses: M = .97, SD = .02; RT: 
M = 1,158 ms, SD = 309 ms), indicating that participants 
had a target representation that could be successfully 
distinguished from distractors. The data of primary inter-
est included only the critical search and probe trials; 
only data from these trials are described in subsequent 
analyses.

Trials with errors were excluded from the analyses; 
these included trials in which participants incorrectly 
identified the orientation of the line within the target 
color or the total trial duration exceeded 3 standard 

Until Response or 10 s
Until Response or 10 s

Until Response or 10 s

800–1,000 ms
800–1,000 ms

Standard Search
Critical Search

Template ProbeTime

Fig. 2. Example of standard visual search, critical visual search, and template-probe trials in Experiment 1. In standard visual search trials, 
participants saw a ring of six circles (one target and five distractors); they were instructed to locate the target circle and report the line orien-
tation within it. A high tone (600 Hz) was played for correct responses, and a low tone (200 Hz) was played for incorrect responses. Critical 
visual search trials were the same as standard visual search trials, except that one of the distractors was a dodecagon. Here, the dashed white 
squares highlight the target in the standard and critical trials, and the dashed red square highlights the distractor in the critical trial (these 
squares did not appear in the actual displays). In template-probe trials, participants were instructed to report the target color by clicking the 
appropriate location on a color wheel using a mouse. The central dot illustrated the color over which the mouse dot hovered. No feedback 
was provided in the probe task.
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deviations of that participant’s mean RT. This resulted 
in a loss of 4.8% of data (for a full description of error 
rates and RT data, see the Supplemental Material avail-
able online). Furthermore, when the first saccade could 
not be assigned to a stimulus or when eye movement 
never left the fixation region, the respective trials were 
excluded from the analyses, which led to a further loss 
of 5.2% of data. Trials in which the first saccade started 
more than 1,000 ms after the trial began were also 
removed, which accounted for 0.16% of data.

Our goal in Experiment 1 was to use eye data to 
directly compare the relational and optimal models of 
template shifting during visual search. Although they 
share some similarities, the two models make qualita-
tively different predictions for how critical distractors, 
particularly those from the negative (i.e., untrained) 
direction of the target, will be processed. The predictions 
from the two models, illustrated in Figure 1, were applied 
to both (a) the proportion of first saccades to the critical 
distractors and (b) fixation dwell times to decide that the 
stimulus was not the target. Specifically, if attention was 
tuned to the relative target feature, first saccades should 
be captured by all negative critical distractors more than 
the positive ones (Fig. 1a). In contrast, the optimal-gain 
theory predicts that first saccades should follow a 
Gaussian tuning curve with a peak over an optimal off-
veridical feature (Fig. 1b). We chose the following values 
for our simulation parameters on the basis of the findings 
from our previous study (Yu & Geng, 2019): σ = 6 (width 
of the Gaussian tuning curves) and μ = −4 (mean of the 
Gaussian tuning curves).

To compare our results with the theoretical models, 
we chose to convert each dependent measure of interest 
(first saccades and fixation dwell times) into a normal-
ized space on the basis of response similarity. Repre-
sentational-similarity analysis is commonly used in 
brain-imaging studies to convert data from very different 
units including brain, behavior, and computational mod-
els into a common space for comparison (Kriegeskorte 
et  al., 2008; Nili et  al., 2014). Using representational-
similarity analysis in this experiment had several advan-
tages: First, all dependent measures could be compared 
with both theoretical models without unit conversion 
or adjustments based on model-specific parameters; 
second, the overall pattern of the data could be estab-
lished without the need to directly compare single data 
points (e.g., using a series of t tests); and third, similarity 
matrices were “parameter free,” and the fit of the data 
to the theoretical models was determined by a simple 
correlation between the two patterns.

In the primary analysis, we converted first-saccade 
and dwell-time data from critical search trials into  
representational-dissimilarity matrices (RDMs). The 
value in each cell of the RDM indicates the dissimilarity 

(inverse of similarity) of the dependent measures 
between a pair of stimulus conditions (Figs. 3b and 3d). 
For example, if the proportion of first saccades to the 
−15° critical distractor was about the same as to the 
−30° distractor, similarity would be high irrespective of 
the actual proportion of first saccades to the −15° and 
−30° distractors. The diagonal entries in an RDM are 
values for identical conditions and therefore have zero 
dissimilarity by definition. After similarity matrices were 
computed for the first saccades and fixation dwell 
times, the primary analysis involved correlating each 
eye-data RDM with each of the two theoretical RDMs 
to determine which of the two models better described 
the data. The two theoretical RDMs were not signifi-
cantly correlated (r = −.10, p = .56). Thus, any correla-
tion between the eye-data RDMs and each theoretical 
matrix cannot be explained by partial correlations with 
the other.

The significance of correlations between the eye-data 
and theoretical RDMs was evaluated by permutation 
tests. The null distribution for the correlation was esti-
mated by randomly rearranging the stimulus labels of 
one of the two RDMs of interest for each participant. 
Then, we correlated this randomized similarity matrix 
with another RDM of interest and computed the Spearman 
correlations between those two RDMs. This step was 
repeated 10,000 times for each set of data and used to 
create a null distribution of permuted correlations. The 
p value of the true correlation was calculated as the 
rank order of the true correlation in the permuted null 
distribution. For example, if the real correlation was 
larger than any of the permuted values within the null 
distribution, then the p value was estimated as less than 
.0001. We rejected the null hypothesis if the real cor-
relation was larger than the top 500th permuted correla-
tion (p < .05).

Results

Analysis of the first saccades that went to the criti-
cal distractors. The proportion of first saccades to 
each critical distractor (Fig. 3a) was converted to an RDM 
(Fig. 3b) for comparison with the relational-model (Fig. 
1a) and optimal-model (Fig. 1b) matrices using a permu-
tation test in which stimulus labels were randomized (see 
the Method section). The first-saccade RDM had a signifi-
cantly positive correlation with the relational RDM (r = 
.71, p = .0001) but not the optimal RDM (r = .003, p = 
.44). In addition, these correlations were compared with 
each other using a permutation test and found to be  
significantly different, p(rrelational > roptimal) = .0001, con-
firming that the first-saccade RDM was more strongly cor-
related with the relational RDM than with the optimal 
RDM. These results strongly support the hypothesis that 
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early attentional guidance, indexed by the first saccade, 
was tuned to the relative feature of the target, replicating 
the work by Becker and colleagues (Becker, 2010; Martin 
& Becker, 2018). However, although all negative critical 
distractors had a high likelihood of capturing attention, 
the proportion of first saccades to negative distractors 
did gradually decrease as color similarity decreased, sug-
gesting that the strength of capture was weakly modified 
by color similarity (Fig. 3a).

Analysis of the fixation dwell times on the critical 
distractors. We next compared the RDM (Fig. 3d) con-
verted from the mean fixation dwell times (Fig. 3c) with 
each of the two theoretical-model RDMs. The dwell-time 
RDM was significantly correlated with the optimal RDM (r 
= .67, p = .004) but not with the relational RDM (r = .04, p = 
.28). Additionally, the correlation between the dwell-time 

RDM and the optimal RDM was stronger than between 
the dwell-time RDM and the relational RDM, p(roptimal > 
rrelational) = .0001. These results demonstrate that the target-
match decisions, occurring after an object was fixated, 
followed the optimal tuning mode (Navalpakkam & Itti, 
2007; Yu & Geng, 2019). These results were replicated  
in a supplemental experiment that used a finer grained 
measurement for near-target (±5°) critical distractors (see 
Experiment 1b in the Supplemental Material). It should be 
noted that the modulation of color similarity on the fixa-
tion dwell times, as seen in Figure 3c, was asymmetrical 
between the positive and negative directions. The nega-
tive distractors appeared to be more difficult to reject as 
nontargets than the corresponding positive ones, suggest-
ing that the match decisions were more difficult overall in 
the negative direction, hinting at a contribution from the 
relational model.
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112 Yu et al.

Analysis of the probe task. The probe task measured 
the contents of the target template, which are presumed 
to be held in memory (Giesbrecht et al., 2013; Woodman 
et al., 2013) uncontaminated by many processes involved 
in concurrent visual search, such as those necessary for 
resolving target selection and distractor suppression. The 
relative click distance from the true target color was 
divided into 5° bins (Fig. 4a) and then converted to an 
RDM (Fig. 4b). As expected, there was a significantly pos-
itive correlation between the probe RDM and the optimal 
RDM (r = .80, p = .004) but a nonsignificant correlation 
between the probe RDM and the relational RDM (r = 
−.05, p = .48). A comparison confirmed that the probe 
RDM was more strongly correlated with the optimal RDM 
than with the relational RDM, p(roptimal > rrelational) = .0001. 
This replicated previous findings (Geng et  al., 2017; 
Navalpakkam & Itti, 2007; Scolari & Serences, 2009; Yu & 
Geng, 2019) that the target representation was shifted 
away from distractors to enhance optimal off-target fea-
tures to increase the template-to-distractors distinctive-
ness (Geng & Witkowski, 2019).

Experiment 2

We concluded from Experiment 1 that attentional guid-
ance and target-match decisions rely on a relational and 
an optimal code, respectively. However, dwell times, 
which were used to infer decision processes, may not 
have been a pure measurement of target decisions 
because they were terminated on the basis of a final 
nontarget decision that could also rely on shape informa-
tion. Furthermore, whereas first saccades are routinely 
considered a reflection of guiding templates, fixation 

dwell times are a less standard measurement of decision 
processes. To address this in Experiment 2, we applied 
the drift-diffusion model (DDM) to visual search perfor-
mance to characterize how accurately and quickly the 
target was discriminated from distractors. To do this, we 
modified the search paradigm to consist of only one 
target and one distractor, which were always the same 
shape. Additionally, to test the relationship between long-
term memory representations of the target and the drift 
rates, we again included the independent continuous 
memory-probe task. Finding a correlation between the 
long-term memory of the target color and the target-
match decision (drift rates) would suggest that the target 
template held in long-term memory is used to generate 
target-match decisions (Wolfe, 2021).

Method

Participants. To determine the sample size for Experi-
ment 2, we first conducted a pilot study with 25 partici-
pants (data were not included in Experiment 2) using 
similar methods and procedures. The effect size for the 
correlation between drift rates and probe responses (r = 
.377) was entered into G*Power (Version 3.1), which esti-
mated that a sample size of 69 was necessary to detect 
significant effects (p = .05, two tailed) with a power of .90. 
We opted for a sample size of 70 to allow counterbalanc-
ing of the distractor colors in the standard visual search 
trials. Data were collected online until we obtained a sam-
ple of 70 participants after exclusion criteria (accuracy in 
the standard search was below 75%) were applied. Forty 
participants were excluded from data analysis. A large 
number of outliers was expected because the experiment 
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was conducted online and we did not provide any feed-
back (for detailed information, see the Procedure sec-
tion). Seventy participants (54 self-reported as women, 16 
self-reported as men; six left-handed; age range = 18–31 
years) from the University of California, Davis, partici-
pated in partial fulfillment of a course requirement. Each 
participant provided written informed consent in accor-
dance with the National Institutes of Health’s guide-
lines for ethical research. Each participant’s color vision 
was assessed by self-report. All participants had normal 
or corrected-to-normal vision, and all had normal color 
vision.

Stimuli. The experiment was conducted entirely online 
through the Testable platform (https://www.testable 
.org/). All stimuli were created in Adobe Illustrator, saved 
as PNG files, and uploaded to Testable. Although we 
expected colors to vary when viewed on different moni-
tors, the relationship between the target and distractors was 
expected to remain apparent to all participants. Variability 

was expected to disadvantage our ability to detect the 
hypothesized optimal pattern in the data because the 
optimal pattern requires greater precision in distinguish-
ing colors. All stimuli were presented against a gray back-
ground (color hue = 808080). The target and distractor 
colors (10°) in the standard visual search trials were iden-
tical to those in Experiment 1. Each search trial (Fig. 5) 
consisted of one target and distractor circle (radius: 135 
pixels) presented bilaterally at the center of the screen 
(distance between the centers of the two circles: 400 pix-
els). The two directions of distractor colors were again 
counterbalanced between participants, and because there 
were no spurious differences (ps > .45, BF01 > 3.2), the 
data were collapsed in all subsequent analyses. The 
selected colors of the distractor set in critical search trials 
ranged between –60° and 60° in steps of 5° from the tar-
get color, resulting in a total of 24 distractor colors.

The color wheel in the probe trials (Fig. 5) was 
divided into 72 bins (5° per bin), and each bin had a 
number attached. Participants reported the number of 
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the color wedge that best matched the target color in 
memory. There were six possible rotations of the color 
wheel.

Design. Participants completed 20 practice standard 
visual search trials with feedback before the main experi-
ment started. The main experiment was composed of 144 
standard visual search trials, 144 critical visual search tri-
als, and 12 template-probe trials. The three types of trials 
were presented in 12 blocks and randomly interleaved 
within each block, with the limitations that the probe tri-
als appeared only after the standard search trials and that 
there were no consecutive probe trials.

Procedure. An example of the target color was pre-
sented prior to the beginning of the experiment. On 
search trials, participants were instructed to indicate 
whether the target color appeared at the left or right by 
left- or right-clicking on the mouse. The stimuli appeared 
on the screen for 500 ms, and participants had up to 5 s 
to make their responses. On probe trials, participants 
were required to type the number of the color wedge that 
best matched the target color in memory in a response 
box at the bottom of the screen. The color wheel would 
remain on the screen until response. Because Experiment 
2 used a two-alternative forced-choice design to measure 
the decision process through the pattern of choices and 
RTs, we did not provide any feedback in the critical search 
trials to keep the responses unbiased from feedback. To 
equate the absence of feedback, we gave no feedback in 
the other two types of trials as well. After responses, a 
central fixation cross was presented for 800 to 1,200 ms 
before the next trial started. Participants were instructed 

to fixate on the center cross when no stimuli were pre-
sented on the screen.

Statistical analysis. Our goal in the standard search 
trials was consistent with our goal in Experiment 1: to set 
up expectations for the distractor colors. Overall perfor-
mance was significantly higher than chance (proportion 
of correct responses: M = .89, SD = .07; RT: M = 583 ms, 
SD = 106 ms), suggesting that these participants held an 
effective target representation. Trials were ex cluded when 
search RTs were below 200 ms or above 2,500 ms or 
when the responses in the probe task were outside of the 
blue-green color range, which accounted for a total of 2% 
of the data.

The main analysis consisted of modeling visual search 
performance (error rate and RT; Fig. 6) from the critical 
trials using a DDM. The separation between the two 
decision boundaries (a) and the nondecision time (t) 
was estimated as a fitted free parameter, both of which 
were the same across color distractor values for each 
participant, whereas the drift rate (ν) was estimated as 
a free parameter in each distractor condition. There was 
no theoretical reason to believe that the decision bound-
ary and nondecision time should vary between critical 
distractors (see the Supplemental Material). Instead, we 
were interested in how the drift rate, which character-
izes the accumulation of noisy evidence over time until 
one of two decision boundaries is reached, differed 
across conditions (Ratcliff & McKoon, 2008). Drift rates 
in this experiment represent how easily the target could 
be distinguished from the distractor: Higher drift rates 
indicate stronger evidence, whereas lower drift rates 
suggest weaker evidence.
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All parameters were estimated using hierarchical 
Bayesian parameter estimation. The hierarchical approach 
is particularly useful for this experiment given the small 
number of choices and RT values measured per partici-
pant. This method captures commonalities across indi-
viduals and also estimates each individual’s parameter 
values (Ratcliff & Childers, 2015). To conduct hierarchical 
drift-diffusion modeling, we used the Python-based tool-
box HDDM (Wiecki et al., 2013). The hierarchical drift-
diffusion model was fitted to accuracy-coded data (i.e., 
the upper and lower boundaries corresponded to correct 
and incorrect responses, and the starting point was fixed 
at 0.5).

For each participant’s data, we used Markov chain 
Monte Carlo sampling to estimate the posterior distribu-
tion of each parameter. Each chain was run with 10,000 
samples, and the first 5,000 warm-up samples were 
discarded as burn-in. Five chains were run. Conver-
gence was assessed by computing the Gelman-Rubin 
R̂ statistic for each parameter. If the samples of the 
different chains converged, the R̂ statistic should be 
close to 1. The range of R̂  values across all group 
parameter estimates was 0.99 to 1.10, suggesting satis-
factory convergence. Goodness of fit was visually 
inspected with a posterior predictive check (Fig. 6).

Results

Analysis of the drift rates. Figure 7a shows the group-
mean posterior estimates of the drift rates for each search 
condition. Following the analysis strategy from Experi-
ment 1, we converted each participant’s drift rates to a 

dissimilarity matrix (Fig. 7b) for comparison with the 
relational- and optimal-model matrices (Fig. 1) using a 
permutation test in which stimulus labels were random-
ized. The theoretical RDMs were up-sampled to match 
the number of conditions in the drift-rate RDM. The two 
theoretical RDMs were only weakly correlated (r = .12,  
p = .05). The drift-rate RDM was significantly correlated 
with both theoretical RDMs (roptimal = .77, p = .0001;  
rrelational = .22, p = .005), but the correlation with the opti-
mal RDM was significantly greater than the correlation 
with the relational RDM, p(roptimal > rrelational) = .0001. As 
shown in Figure 7a, the drift rates for positive critical 
distractors were larger overall than those for negative dis-
tractors, but there was a monotonic increase in drift rates 
for both negative and positive distractors as they became 
more dissimilar from the target. Interestingly, the nadir 
was at the −5° distractor, and the drift rate was negative. 
This indicates that the accumulation of evidence was 
slow and that the “wrong” decision was made more often 
than not. These results support the conclusion that the 
target-match decisions were strongly modulated by the 
similarity to the optimal off-target feature centered over 
−5°, but there was also an overall directional bias. The 
blend of both models in these data was not unexpected 
given that the dependent variable here involved accuracy 
and RT data, which would include combined effects of 
covert attentional guidance and decision processes, but it 
is noteworthy that the optimal model explained signifi-
cantly more variance in the results.

Analysis of the probe task. The color wheel was com-
posed of 72 color wedges sampling color hues in steps  
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of 5°. Therefore, the relative click distance from the verid-
ical target color was divided into 5° bins (Fig. 8a) and 
then converted to an RDM (Fig. 8b). The probe RDM was 
significantly correlated with both theoretical-model matri-
ces, roptimal = .56, p = .0001, rrelational = .11, p = .001. Com-
parisons confirmed that the probe RDM was more 
strongly correlated with the optimal RDM than with the 
relational RDM, p(roptimal > rrelational) = .0001. These results 
converged with those of Experiment 1, suggesting that 
the target representation was shifted away from distrac-
tors to enhance optimal off-target features.

Correlation between performance on the memory-
probe and search tasks. Next, we conducted a corre-
lation analysis on individual differences between how 
well the probe data matched the optimal RDM and drift 
rates. A positive correlation between these two metrics 
would suggest that individuals whose responses on the 
probe task were closer to the optimal model also made 
faster and more accurate decisions about which of the 
two objects was the target during visual search. First, the 
correlation between each participant’s probe matrix and 
the optimal RDM from above was used as a measurement 
of how well their target templates fitted the optimally 
tuned template. Second, new drift-rate parameters were 
estimated for each participant with data collapsed across 
color directions (negative, positive) to reduce the feature 
space (cf. a drift-rate parameter per distractor color). The 
resulting values were then correlated with their drift-rate 
parameter from visual search. We found that participants 
who had more optimally tuned templates showed faster 
drift rates, reflecting an easier discrimination of target 

from both negative and positive distractors (negative: r = 
.28, p = .02, BF10 = 3.50, R2 = .06; positive: r = .35, p = 
.003, BF10 = 14.70, R2 = .11; Fig. 9). These results highlight 
the underlying relationship between the target-decision 
processes and the target color held in long-term memory 
over time.

General Discussion

The purpose of these experiments was to test hypoth-
eses of how template information is used during the 
guidance and decision stages of visual search. Using a 
visual search task for a target among linearly separable 
distractors, we demonstrated that early attentional 
guidance was a coarse process mainly based on rela-
tional sensory information, whereas subsequent match 
decisions were compared with a more precisely tuned 
template centered on an optimal off-target feature. 
Although previous studies have found evidence for 
coarse guidance (Kerzel, 2019; Martin & Becker, 2018) 
and precise decisions (Rajsic & Woodman, 2020) sepa-
rately, our experiments provide direct evidence that 
the informational content of a single target object is 
used differently on these two subprocesses of visual 
search.

There is a long history of work showing that the 
contents of the template can bias the deployment of atten-
tion and saccades toward potential targets (Chelazzi 
et  al., 1998; Olivers et  al., 2011; Soto et  al., 2008). 
Recent research has shown that the template may not 
be precisely centered over the specific target feature, 
as previously assumed, but instead may be shifted to 
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increase the distinctiveness of the target from distractors 
(Hodsoll & Humphreys, 2001; Navalpakkam & Itti, 2007; 
Scolari & Serences, 2009). In line with Becker and  
colleagues’ relational account (Becker, 2010; Martin & 
Becker, 2018), the eye data in Experiment 1 showed 
that all negative critical distractors that were relational 
matches captured attention and first saccades more 
strongly than positive distractors. Thus, attention 
appears to be initially guided by the relative feature of 
the target, not specific feature values. This coarse rep-
resentation of the target might be well suited for rapid 
stimulus prioritization under noisy sensory conditions, 
for example, when many stimuli are in peripheral vision 
where color and spatial acuity are poor (Hulleman, 
2010; Hulleman & Olivers, 2017; Rosenholtz, 2017).

After one item is selected, however, a decision must 
be made regarding the exact identity of the stimulus as 
a match or nonmatch to the target. Unlike in attentional 
guidance, the importance of this decision process on 
visual search has been explored only more recently (Hout 
& Goldinger, 2015; Malcolm & Henderson, 2010; Rajsic 
& Woodman, 2020). In the current study, we used fixation 
dwell times (Experiment 1) and DDM drift rates (Experi-
ment 2) as measurements of target-match decisions. The 
optimal model fitted both dwell times and drift rates, 
indicating that the decision process operates on an opti-
mally shifted and precisely tuned template. The precision 
appears necessary for accurate decisions to be made, and 
the shift increases the target-to-distractor discriminability 
to speed decisions.

It should be pointed out that although the first sac-
cades were better described by the relational model, 
and the dwell times and drift rates were better described 

by the optimal model, both sets of data showed hints 
of the other pattern. Therefore, it is possible that guid-
ance and decision are influenced by both relational and 
optimal tuning, but the relative bias toward one or the 
other is weighted by the pressure to perform fast guid-
ance or precise decisions. These results raise an open 
question about whether guidance and decisions during 
the visual search cycle operate using two discrete rep-
resentations or a single, flexible template that is weighted 
by the exact computation required at each stage of 
visual search.

Both ideas, that of separate templates and that of 
flexible weighting of a single template source, are pres-
ent in the literature. For example, Wolfe and colleagues 
suggest that there is a guiding template in working 
memory and a separate target template in long-term 
memory to guide search when there is a large number 
(> 100) of potential targets (Cunningham & Wolfe, 2014; 
Wolfe, 2021). Our results are compatible with this 
framework and further suggest that the target template 
in long-term memory serves as the template on which 
match decisions are made. Participants who established 
more optimally tuned target templates in long-term 
memory had higher drift rates, suggesting that decisions 
during visual search are directly related to the off-
veridical target representation in memory (Geng &  
Witkowski, 2019; Lleras et  al., 2020). This finding is 
consistent with the characterization of target templates 
held in long-term memory in Guided Search 6.0 (Wolfe, 
2021), in which a potential target in working memory 
selected by the guiding template is compared with a 
target template held in long-term memory through a 
drift-diffusion process.
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Our findings also recall the literature surrounding 
questions about how active representations are used in 
working and long-term memory to guide attention during 
visual search. Our results are also consistent with the 
finding that stable search targets are stored in long-term 
memory and that this information can be used for target- 
match decisions (Carlisle et al., 2011; Woodman et al., 
2013). We do not have a position at this time on whether 
relational guidance is based on an active working mem-
ory template that is separate from the optimal memory 
representation of the target or whether relational guid-
ance reflects a coarser manifestation of the same target 
template in memory. The former is a possibility given 
that one target representation can be held in active 
working memory, whereas the other is held as an acces-
sory or latent item in working or long-term memory 
(Olivers et al., 2011; Woodman et al., 2013). The latter 
is also a possibility given findings that there are ver-
sions of a single target representation in multiple brain 
regions and that the exact computation being done on 
the target information is dependent on the stage of 
processing (Lee et  al., 2013; Long & Kuhl, 2018). 
Another possibility is that participants simply set dif-
ferent criteria on a single template for each stage of 
processing: a liberal criterion to broadly capture all 
potential targets in the visual field (possibly also 
accounting for acuity degradations in peripheral vision) 
and then a more conservative criterion for more precise 
decisions. Future work is necessary to determine the 
exact mechanisms by which guidance and decisions 
operate on different information patterns. Finally, the 
current findings were based on the special case of 
search for a target among linearly separable distractors. 
Real-world search targets, however, are infrequently 
linearly separable from distractors. The generalizability 
of our findings should be further investigated under 
more typical conditions to determine whether the dif-
ferences in the precision of guidance and decision are 
a general property of visual search.

Taken together, our findings suggest that the target 
template operates distinctively during guidance and 
decision stages of visual search. Early attentional guid-
ance is a coarse process to weight sensory information, 
but later match decisions depend on a more precise 
representation of the target to efficiently determine 
identity. To return to our example of searching for a 
tiger in the grasslands, our results suggest that out in 
the field, guidance is coarse and will select anything 
that might be a tiger. In contrast, after attention has 
selected an object, an optimal target template is more 
useful for deciding whether the object is indeed a tiger. 
Although the current behavioral data do not allow us 
to fully address whether the information source for the 
two stages of processing is identical or separate, the 

results offer a resolution to the debate in the literature 
over how template information is shifted in response 
to expected distractor features.
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